Abstract

We have used ground-penetrating radar to profile the depth to permafrost, to groundwater beneath permafrost, and to bedrock within permafrost in alluvial sediments of interior Alaska. We used well log data to aid the interpretations and to calculate dielectric permittivities for frozen and unfrozen materials. Interfaces between unfrozen and frozen sediments above permafrost were best resolved with wavelet bandwidths centered at and above 100 MHz. The resolution also required consideration of antenna configuration, season, and surface conditions. Depths to subpermafrost groundwater were profiled where it was in continuous contact with the bottom of the permafrost, except near transitions to unfrozen zones, where the contact appeared to dip steeply. The complexity of the responses to intrapermafrost bedrock, detected at a maximum depth of 47 m. appears to distinguish these events from those of subpermafrost saturated sediments. The relative dielectric permittivity ranged between 4.4 and 8.3 for the permafrost, and between 12 and 45 for partially to fully saturated, unfrozen silts and sands. Scattering losses are evident from intrapermafrost diffractions and from the improved penetration achieved by lowering the midband radar frequency from 100 to 50 MHz.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.