Abstract

A new nonlinear filter for wave-equation extrapolation-based multiple suppression is designed in the f-k domain. The realization of the new filter in the f-k domain is an extension of the conventional f-k dip filter. However, the new demultiple filter is superior to the conventional f-k dip filter in the sense that the multiple reject zones are determined automatically (based on the information of the input original data and the multiple model traces obtained by the waveextrapolation method) rather than by prior information on multiple moveout (dip) range. Therefore, it can easily cope with situations such as aliasing and the mixture of energy from multiples and primaries in the same quadrant. The new filter is smooth on the boundary of the reject area. Numerical examples demonstrate that the new filter is equivalent to the conventional f-k dip filter in multiple suppression for simple situations. However, when the multiples and primaries are mixed in the same quadrant and have only slight difference in dip, the new filter offers significant advantages over the conventional technique.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.