We have compared three data-driven internal multiple reflection elimination schemes derived from the Marchenko equations and inverse scattering series (ISS). The two schemes derived from Marchenko equations are similar but use different truncation operators. The first scheme creates a new data set without internal multiple reflections. The second scheme does the same and compensates for transmission losses in the primary reflections. The scheme derived from ISS is equal to the result after the first iteration of the first Marchenko-based scheme. It can attenuate internal multiple reflections with residuals. We evaluate the success of these schemes with 2D numerical examples. It is shown that Marchenko-based data-driven schemes are relatively more robust for internal multiple reflection elimination at a higher computational cost.

You do not currently have access to this article.