The ∼2800-km-long Snowbird tectonic zone is a well-recognized but still enigmatic feature in the western Canadian Shield. It has been interpreted as a Paleoproterozoic continental suture or an Archean strike-slip fault system, but here we suggest that the distinctive geometry of the central Snowbird tectonic zone is primarily due to the interaction of crosscutting Paleoproterozoic intracontinental thrust and strike-slip shear zones having a length of hundreds of kilometers. First, a major zone of thrust-sense shearing, coeval with early continent-continent collision between the Superior and western Churchill provinces, accommodated uplift of a large exposure of granulite facies lower continental crust. Younger strike-slip shear zones, perhaps analogous to Asian fault systems behind the Himalayan orogen, offset the thrust zone. Thus, the current geometry and distribution of deep-crustal rocks in this region represent a relatively late stage in the tectonic evolution of the western Churchill province rather than an accretionary one. Earlier structures oriented at a high angle to the Snowbird tectonic zone may record the fundamental accretionary history in this part of Laurentia.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.