Abstract

We provide model evidence for a previously unexplored positive feedback between tectonic strain and fluvial erosion by considering rock erodibility as a function of shear damage. Plastic shear strain permanently damages the upper crust within planar shear zones, providing a greater ease for detachment and transport by fluvial processes. The subsequent rapid erosion of exposed shear zones reforms the topographic stress field in a way that encourages continued accommodation of strain, a positive feedback response that becomes more prominent with greater shear damage. Based on model results and natural examples, rock strength heterogeneity plays a major role in the evolution of drainage network patterns and the capability for valley-scale strain localization in active orogens.

You do not currently have access to this article.