Abstract

Stromboli is a persistently active, open-vent basaltic volcano whose activity is controlled by the balance between magma supply, outgassing, and eruptive rates, and is characterized by low-intensity, regular Strombolian explosions. However, two types of large, transient, violent explosive eruptions suddenly occur with no clear precursory activity. These explosions, called “major” and “paroxysmal” depending on size, cover a large variability in intensity and magnitude, but are all marked by short duration. Paroxysms have significantly larger intensities (>106 kg/s) than major explosions (104 kg/s) and fundamental differences in the characteristics (composition, crystallinity, vesicularity) of the erupted tephra, suggesting that different sources feed these two eruption types. Paroxysms are generated by the explosive fragmentation of low-porphyricity (LP) magma mingled with high-porphyricity resident magma in the shallow reservoir, whereas major eruptions are likely associated with destabilization of the lower portion of the shallow magmatic system, continuously hybridized by the arrival of LP magma. In general, the intensity of these explosions is related to the amount of the LP magma erupted (>107 kg in paroxysms and 104–105 kg in major explosions), suggesting that the magma plays a major role in the fragmentation mechanism. Despite its primary importance in the hazards of Stromboli, the total amount of magma erupted in these events in the past 10 years is less than 1% of the total mass erupted by the volcano.

You do not currently have access to this article.