Abstract

The majority of >3 Ga metabasalts have chemical features, such as high field strength element (HFSE) depletions, that are characteristic of modern island-arc basalts. These compositions have been interpreted as evidence for subduction of oceanic crust early in Earth’s history. Alternatively, the apparent absence of Archean mafic rocks with mid-oceanic ridge basalt (MORB) and ocean island basalt (OIB) compositions and the ubiquitous occurrence of metabasalts with HFSE anomalies suggest that these chemical features may instead be a widespread characteristic of the Archean mantle related to early chemical differentiation and unrelated to modern-style recycling of crust. Here we present major- and trace-element data for a suite of metabasalts from Innersuartuut Island, southwest Greenland, which have a minimum age constraint of 3.75 Ga and are likely as old as ≥3.85 Ga. Samples from Innersuartuut show no evidence for crustal contamination or subduction-related magmatism, and have a petrogenesis comparable to modern OIB. The new data demonstrate that a compositional range for volcanic rocks comparable to that seen in the Phanerozoic existed in the Eoarchean. Therefore, rather than a global anomaly, subduction-related processes are the likely origin for the compositions of the most commonly preserved Archean mafic rocks with island-arc basalt characteristics.

You do not currently have access to this article.