Abstract

New high-quality multibeam data presented here depict the northern slope of the Little Bahama Bank (Bahamas). The survey reveals the details of large- and small-scale morphologies that look like siliciclastic systems at a smaller scale, including large-scale slope failure scars and canyon morphologies, previously interpreted as gullies and creep lobes. The slope exhibits mature turbidite systems built by mass-flow events and turbidity currents. The sediment transport processes are probably more complex than expected. Slope failures show sinuous head scarps with various sizes, and most of the scars are filled with recent sediment. Canyons have amphitheater-shaped heads resulting from coalescing slump scars, and are floored by terraces that are interpreted as slump deposits. Canyons rapidly open on a short channel and a depositional fan-shaped lobe. The entire system extends for ∼40 km. The development of these small turbidite systems, similar to siliciclastic systems, is due to the lack of cementation related to alongshore current energy forcing the transport of fine particles and flow differentiation. Detailed analyses of bathymetric data show that the canyon and failure-scar morphology and geometry vary following a west-east trend along the bank slope. The changing parameters are canyon length and width, depth of incision, and canyon and channel sinuosity. Accordingly, failure scars are larger and deeper eastward. These observations are consistent with a westward tectonic tilt of the bank during the Cenozoic.

You do not currently have access to this article.