Abstract

High-resolution oxygen isotope records document the timing and magnitude of global warming across the Permian-Triassic (P-Tr) boundary. Oxygen isotope ratios measured on phosphate-bound oxygen in conodont apatite from the Meishan and Shangsi sections (South China) decrease by 2‰ in the latest Permian, translating into low-latitude surface water warming of 8 °C. The oxygen isotope shift coincides with the negative shift in carbon isotope ratios of carbonates, suggesting that the addition of isotopically light carbon to the ocean-atmosphere system by Siberian Traps volcanism and related processes resulted in higher greenhouse gas levels and global warming. The major temperature rise started immediately before the main extinction phase, with maximum and harmful temperatures documented in the latest Permian (Meishan: bed 27). The coincidence of climate warming and the main pulse of extinction suggest that global warming was one of the causes of the collapse of the marine and terrestrial ecosystems. In addition, very warm climate conditions in the Early Triassic may have played a major role in the delayed recovery in the aftermath of the Permian-Triassic crisis.

You do not currently have access to this article.