Abstract

The Jiangnan fold belt separates the Yangtze and Cathaysia blocks in South China and has long been considered Grenvillian in age in order to place South China in central Rodinia. It consists of deformed Early Neoproterozoic strata that are unconformably overlain by undeformed Late Neoproterozoic strata and intruded by undeformed and unmetamorphosed granitic plutons. Zircons from the Early Neoproterozoic strata yield U-Pb ages as young as 830 Ma, and one granitic pluton has a zircon U-Pb age of ca. 827 Ma. The ≥830 Ma mafic rocks along the southeastern margin of the Yangtze block have arc-affinity geochemical characters, whereas mafic rocks younger than 830 Ma have typical ocean island basalt (OIB)—like compositions. Thus, we suggest that the Early Neoproterozoic strata were deposited on an active continental margin prior to amalgamation of the Yangtze and Cathaysia blocks at ca. 830 Ma. The overlying Late Neoproterozoic strata were deposited in the intracontinental rifted Nanhua Basin at 820–730 Ma and probably reflect backarc spreading above the long-lived (950–735 Ma) oceanic subduction zone along the northern and western margin of the Yangtze block. This model is consistent with the secular tectonic evolution of South China during the Neoproterozoic. The Jiangnan fold belt is therefore not a Grenvillian feature as previously suggested, and there is no evidence to place South China in central Rodinia. Instead, we believe that South China was located in a marginal position relative to this supercontinent.

You do not currently have access to this article.