Abstract

The time-averaged flux rate for a CO2-bearing hydrous fluid during greenschist facies regional metamorphism was estimated to be 10–10.2 ± 0.4 m3 m−2 s−1 by combining (1) Peclet numbers obtained by chromatographic analysis of the propagation of reaction fronts in 33 metamorphosed basaltic sills in the southwest Scottish Highlands (UK), (2) empirical diffusion rates for CO2 in water, and (3) calculated time-averaged metamorphic porosities. The latter were calculated using an expression obtained by combining estimated Peclet numbers with empirical porosity-permeability relationships and Darcy's law. This approach yielded a time-averaged metamorphic porosity of 10–2.6 ± 0.2 for greenschist facies conditions. The corresponding time scale for metamorphic fluid flow was 103.6 ± 0.1 yr. By using mineral assemblages to constrain fluid compositions, a time-averaged annual flux rate for carbon of 0.5–7 mol C m−2 yr−1 was calculated. This matches measured emission rates for metamorphic CO2 from orogenic hot springs and exceeds estimated rates of CO2 drawdown by orogenic silicate weathering, suggesting that orogenesis is a source rather than a sink of atmospheric CO2.

You do not currently have access to this article.