Abstract

Nanometer-scale element mapping and spectroscopy of desert varnish from the northern Sonoran Desert in southwestern Arizona reveal a dynamic disequilibrium system characterized by postdepositional mineralogical, chemical, and structural changes activated by liquid water. Lack of equilibrium is suggested by the large variety of coexisting Mn phases. Sparse secondary Ba and Sr sulfates also occur, as do carbonaceous particles. Individual Mn-oxide particles contain variable concentrations of Ba and Ce, reflecting their role as repositories of trace elements, presumably derived from atmospheric aerosols. Desert varnish is analogous to more familiar sediments in displaying authigenic and diagenetic structures, but with total sediment thicknesses <1 mm and structures at the nanometer scale. As such, it is neither a weathering rind nor patina, but a unique subaerial sediment that is in dynamic disequilibrium. Our results suggest continuing adjustment of varnish to changing environmental conditions.

You do not currently have access to this article.