Abstract

A continuous decadal-scale resolution record of climate variability over the past 1400 yr in the northern Gulf of Mexico was constructed from a box core recovered in the Pigmy Basin, northern Gulf of Mexico. Proxies include paired analyses of Mg/Ca and δ18O in the white variety of the planktic foraminifer Globigerinoides ruber and relative abundance variations of G. sacculifer in the foraminifer assemblages. Two multi-decadal intervals of sustained high Mg/Ca indicate that Gulf of Mexico sea surface temperatures (SSTs) were as warm or warmer than near-modern conditions between 1000 and 1400 yr B.P. Foraminiferal Mg/Ca during the coolest interval of the Little Ice Age (ca. 250 yr B.P.) indicate that SST was 2–2.5 °C below modern SST. Four minima in the Mg/Ca record between 900 and 250 yr B.P. correspond with the Maunder, Spörer, Wolf, and Oort sunspot minima, suggesting a link between changes in solar insolation and SST variability in the Gulf of Mexico. An abrupt shift recorded in both δ18Ocalcite and relative abundance of G. sacculifer occurred ca. 600 yr B.P. The shift in the Pigmy Basin record corresponds with a shift in the sea-salt-sodium (ssNa) record from the Greenland Ice Sheet Project 2 ice core, linking changes in high-latitude atmospheric circulation with the subtropical Atlantic Ocean.

You do not currently have access to this article.