Abstract

The results of geodetic monitoring since 2002 at Sierra Negra volcano in the Galápagos Islands show that the filling and pressurization of an ∼2-km-deep sill eventually led to an eruption that began on 22 October 2005. Continuous global positioning system (CGPS) monitoring measured >2 m of accelerating inflation leading up to the eruption and contributed to nearly 5 m of total uplift since 1992, the largest precursory inflation ever recorded at a basaltic caldera. This extraordinary uplift was accommodated in part by repeated trapdoor faulting, and coseismic CGPS data provide strong constraints for improved deformation models. These results highlight the feedbacks between inflation, faulting, and eruption at a basaltic volcano, and demonstrate that faulting above an intruding magma body can relieve accumulated strain and effectively postpone eruption.

You do not currently have access to this article.