Abstract

Inclusions of majoritic garnet in diamonds from the Jagersfontein kimberlite formed at unusually great depths of ∼250 to >500 km in the asthenosphere and transition zone. The original host rocks were derived from a much shallower, basaltic (eclogitic) source. The presence of negative Eu anomalies in all majoritic garnets requires a crustal origin, thereby linking these very deep diamond sources to subducting oceanic crust. The carbon isotope values (δ13C) of the host diamonds fall within a narrow range at ∼−20‰, which is fundamentally different from the broad range (−24‰ to −2‰) and bimodal distribution of carbon isotopes of Jagersfontein diamonds that formed in the shallower lithosphere. This indicates that majoritic garnet-bearing diamonds at Jagersfontein inherited their light carbon isotopic composition directly from organic matter contained in a subducting slab. These diamonds were likely formed by direct conversion from graphite, well within the diamond stability field.

You do not currently have access to this article.