Abstract

The rich paleoclimate information preserved in lacustrine sedimentary organic matter can be difficult to extract because of the mixed terrestrial and aquatic inputs. Herein we demonstrate that compound-specific hydrogen isotope analysis of palmitic acid, (PA), a ubiquitous compound in lacustrine sediments, captures the δD signals of lake water. Samples collected across a diverse range of 33 North American lakes show a strong correlation between water and δDPA values. At Crooked Pond, Massachusetts, the δDPA changes in a 14 k.y. sediment record parallel temperature trends inferred from fossil pollen. Downcore changes reveal differences between climatic trends in New England and in Greenland that are consistent with important regional differences in climate controls.

You do not currently have access to this article.