Abstract

A suite of sediment core samples was recovered from two lakes, Crowfoot and Bow lakes, that are adjacent to the Crowfoot moraine type locality, to identify and radiocarbon date sediments related to the Crowfoot advance. The Crowfoot moraine system, widely recognized throughout northwestern North America, represents a glacial advance that is post-Wisconsin and pre-Mazama tephra in age. An interval of inorganic sediments bracketed by accelerator mass spectrometry radiocarbon ages of ca. 11,330 and 10,10014C yr B.P. is associated with the Crowfoot moraine. The Crowfoot advance is therefore approximately synchronous with the European Younger Dryas cold event (ca. 11,000-10,000 14C yr B.P.). Furthermore, the termination of the Crowfoot advance also appears to have been abrupt. These findings illustrate that the climatic change responsible for the European Younger Dryas event extended beyond the northern Atlantic basin and western Europe. Equilibrium-line altitude (ELA) depressions associated with the Crowfoot advance are similar to those determined for the Little Ice Age advance, whereas Younger Dryas ELA depressions in Europe significantly exceed Little Ice Age ELA depressions.

You do not currently have access to this article.