Abstract

The Miocene Kingston Range-Halloran Hills detachment fault system of the eastern Mojave Desert, California, delineates part of the eastern breakaway zone for a profoundly extended area between the Sierra Nevada and the Spring Mountains structural blocks. The shallow-dipping, west-rooting detachment fault cuts discordantly across Paleozoic and Precambrian units in the Mesozoic foreland fold-and-thrust belt, exhibits west- to southwest-trending corrugations with structural relief of up to 1.5 km, and underlies the terrestrial Shadow Valley basin. Middle Miocene fault displacement and syntectonic sedimentation in the northern basin were terminated at ∼12.4 Ma by intrusion of the large (∼130 km2), shallow-level (≥4 km depth) Kingston Peak pluton across the detachment fault soon after faulting began. Basin sedimentation and fault displacement southeast of the pluton were not, however, disrupted by its emplacement and continued to evolve. Northern "pluton-pinned" and southern "pluton-free" domains were separated by the Blacksmith Hills fault, a northeast-striking, right-slip lateral ramp that accommodated more than 3 km of postpluton differential extension between pinned and nonpinned domains. In more western regions, late phases of detachment-fault-related extension beneath formerly pinned areas (including western and central parts of the pluton itself) are believed to have led to the development of two generations of east-striking left-slip faults. Collectively, these dextral and sinistral transfer faults illustrate the complex patterns of differential extension and accommodation that can characterize detachment-fault systems as adjacent areal domains of extension are generated and die.

You do not currently have access to this article.