Abstract

The thermal budget of an active lava flow observed on 20 June 1984 from the Southeast crater of Mount Etna, Sicily, Italy, was analyzed from data taken by the Landsat Thematic Mapper. The Thematic Mapper images constitute one of the few satellite data sets of sufficient spatial and spectral resolution to allow calibrated measurements on the distribution and intensity of thermal radiation from active lava flows. Using radiance data from two reflective infrared channels, we can estimate the temperature and areas of the hottest parts of the active flow, which correspond to hot (>500 °C) fractures or zones at the flow surface. Using this technique, we estimate that only 10%-20% of the total radiated thermal power output is emitted by hot zones or fractures, which constitute less than 1% of the observed surface area. Generally, it seems that only where hot fractures or zones constitute greater than about 1% of the surface area of the flow will losses from such features significantly reduce internal flow temperatures. Using our radiance observations as boundary conditions for a multicomponent thermal model of flow interior temperature, we infer that, for the parts of this flow subject to analysis, the boundary layer and flow thickness effects dominate over radiant zones in controlling the depression of core temperature.

You do not currently have access to this article.