Abstract

Icebergs and sea ice rework the sediments of high-latitude shelves, producing modern diamicts (ice-keel turbates) unrelated to glacial proximity. Off Antarctica, sidescan sonar data indicate the presence of ice-gouge features formed by the physical interaction between ice keels and the sea bed. These are recognized as incisions a few metres deep and tens of metres wide, in water depths up to 500 m. On the submarine bank tops and slopes off Wilkes Land and in the Weddell Sea, subcircular depressions 30 to 150 m in diameter, a washboard pattern, and hummocky bed features also represent iceberg-resting sites. The freshness of sea-bed morphology, nearby Holocene sediment ponding, and active hydraulic sedimentary processes indicate that the sea floor is being reworked by iceberg keels. Tabular iceberg drafts in excess of 330 m have been measured, and modeling studies suggest that nontabular iceberg drafts of 500 m are possible. We conclude that a modern ice-keel turbate deposit in the form of a poorly stratified diamicton is probably widespread on that part (54%) of the Antarctic shelf less than 500 m deep.

You do not currently have access to this article.