We present graphical and analytical methods to determine the extensional or contractional separation of a faulted planar marker using commonly measured field data: fault attitude, slip direction, and bedding or other marker-plane attitude. This determination is easily accomplished for horizontal markers. Faults with normal components of slip extend the markers and indicate extensional tectonics; those with reverse components are contractional. Although the methods quantify this simple relation for horizontal markers, they are most useful in rocks with planar fabrics of steep dip where marker separation cannot be uniquely determined from map or outcrop patterns alone and where faults with normal components of dip slip can contract markers and those with reverse components can extend them. The methods rely on two parameters: (1) the angle between normals to the marker and fault planes and (2) the angle between the slip direction and intersection of the marker and fault. This second parameter measures the obliquity of slip relative to the directions of maximum extensional or contractional separation of the marker, and for a horizontal marker, it is equivalent to the rake of the slip direction. The graphical method requires stereographic projections routinely used for faulting data; the analytical method is programmable on a calculator.

You do not currently have access to this article.