Abstract

Precise U–Pb zircon dating using the chemical abrasion – isotope dilution – thermal ionization mass spectrometry (CA-ID-TIMS) method constrains the age of the Central Sudetic Ophiolite (CSO) in the Variscan Belt of Europe. A felsic gabbro from the Ślęża Massif contains zircon xenocrysts dated at 404.8 ± 0.3 Ma and younger crystals dated at 402.6 ± 0.2 Ma that determine the final crystallization age of the gabbro. An identical age of 402.7 ± 0.3 Ma was determined for plagiogranite from the Nowa Ruda–Słupiec Massif, and plagiogranite from the Braszowice–Brzeźnica Massif yields a similar, but less reliable, age of > 401.2 Ma. The different massifs in the CSO are therefore considered as tectonically dismembered fragments of a single oceanic domain formed at c. 402.6–402.7 Ma (Early Devonian – Emsian). The magmatic activity recorded in the CSO was contemporaneous with the high-temperature/high-pressure metamorphism of granulites and peridotites in the Góry Sowie Massif, separating dismembered parts of the CSO. This suggests geodynamic coupling between the continental subduction recorded in the Góry Sowie and the oceanic spreading recorded in the CSO. Regional geological data indicate that the CSO was obducted before c. 383 Ma, less than 20 Ma after its formation at an oceanic spreading centre. The CSO is shown to be one of the oldest and first obducted among the Devonian ophiolites of the Variscan Belt. The CSO probably originated in an evolved back-arc basin in which the influence of subduction-related fluids and melts increased with time, from negligible during the formation of predominant mid-ocean-ridge-type magmatic rocks to strong at later stages, when rodingites, epidosites and other minor lithologies formed.

You do not currently have access to this article.