Abstract

The Yuanjiacun banded iron formation (BIF) is hosted in lower Proterozoic metamorphic strata, and its structures are dominated by bands or streaks. Based on their differences in mineral compositions, the iron ores can be subdivided into haematite quartzite, magnetite quartzite, stilpnomelane magnetite quartzite and stilpnomelane haematite quartzite. The geochemical characteristics of the surrounding rocks show that the protoliths consisted of argillaceous and arenaceous sedimentary rocks. The predominant provenance was a high-maturity felsic sedimentary terrane. The absence of syn-depositional igneous rocks and the tectonic setting discrimination diagrams indicate that the Yuanjiacun BIF formed in a passive continental margin setting. Negligible terrigenous materials were involved in the precipitation of the Yuanjiacun BIF. The precipitation of the Yuanjiacun BIF was predominantly controlled by the mixing of seawater and hydrothermal fluids. Its metallogenic material originated from the leaching of mafic oceanic crust by hydrothermal fluids. The observed Ce anomaly deficiency and heavy Fe isotope enrichment indicate that the Yuanjiacun BIF formed in an anoxic marine environment. In a redox-stratified palaeo-ocean, the Yuanjiacun BIF formed in reducing seawater below the oxidation–reduction transition zone. The Si and O isotope compositions of quartz suggest that the formation of the Yuanjiacun BIF was closely related to submarine hydrothermal activity. The Si and Fe erupted from the seafloor and precipitated by supersaturation and biological oxidation under anoxic conditions, respectively.

You do not currently have access to this article.