– A comprehensive geochronological and geochemical study was carried out on the gneissic monzogranites, porphyritic granodiorites and charnockites in the Gaozhou complex of the Yunkai massif in the southern part of the South China block to better understand the Early Palaeozoic tectonic regime of the South China block. Laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) U–Pb dating of zircons indicates an age of 453.2 ± 5.1 Ma to the formation of the gneissic monzogranites, whereas the porphyritic granodiorites and charnockites were generated at 437.0 ± 1.5 Ma and 435.2 ± 2.2 Ma, respectively. The gneissic monzogranites show geochemical features consistent with the high-K, calc-alkaline rock series and are strongly peraluminous. They have SiO2 contents ranging from 67.75 to 69.65 wt. % and relatively low CaO contents (1.66–1.94 wt. %). Their REE patterns are fractionated with enriched LREEs and negative Eu anomalies. The samples also show enrichment in LILEs (e.g. Rb and K) and Pb, and depletion in Sr, Ba and HFSEs (e.g. Nb, Ta, Ti and P). They have εNd(t) values of −8.2 to −7.7. Conversely, the porphyritic granodiorites and charnockites are characterized as medium-K, calc-alkaline rock series and weakly to strongly peraluminous. They exhibit pronounced depletions in HFSEs and positive Pb anomalies. Compared to the earlier gneissic monzogranites, these rocks have relatively lower SiO2 (65.50–69.36 wt. %), but higher CaO contents (3.34–4.05 wt. %), and have slightly lower εNd(t) values (−9.1 to −8.4). Petrography and geochemical compositions of the gneissic monzogranites indicate that they are S-type granite and likely formed by partial melting of Neoproterozoic to Early Palaeozoic immature metagreywackes; whereas The porphyritic granodiorites and charnockites are A-type granite and likely derived from low degrees of partial melting of the dry, granulitic residue depleted by prior extraction of granitic melt. The new data for the Caledonian granitoids in the Yunkai massif suggest that they were formed in a post-collisional tectonic setting. They represent the earliest post-collisional alkaline magmatism reported so far in the Yunkai massif, and thus indicate a tectonic regime switch, from compression to extension, as early as the Late Ordovician to Early Silurian (~450–435 Ma).

You do not currently have access to this article.