The Neoproterozoic–Palaeozoic transition (NPT) around 600 Ma ago was a critical time interval when the Earth experienced fundamental change, manifested as climatic extremes – ‘snowball Earth’ – followed by the emergence and rapid diversification of animals – ‘Cambrian explosion’. How animals and environments co-evolved, and what caused these fundamental changes to the Earth system during the NPT, is a great scientific puzzle, which has been a rapidly developing frontier of interdisciplinary research between bio- and geosciences. South China preserves a complete stratigraphic succession of the NPT developed in various facies ranging from shallow to deep marine realms with extraordinarily well-preserved, successive fossil biotas in various taphonomic settings (Zhu, 2010; Fig. 1), making it a key area and global focus of studies in the field over recent decades. Indeed, the current narrative of early animal evolution has largely been based on the fossil biotas from South China. These include: (1) the world's oldest microscopic animal fossils with cellular details from the early Ediacaran Weng'an biota (Doushantuo Formation); (2) putative macroscopic animal fossils preserved as carbonaceous imprints from the early Ediacaran Lantian, Wenghui and Miaohe biotas (also Doushantuo Formation); (3) typical late Ediacaran faunas, preserved in dark limestone (Shibantan biota) and as large and poorly mineralized tubular animal fossils (Gaojiashan biota), both from the Dengying Formation; (4) phosphatized small shelly and soft-bodied animal fossils from the early Cambrian Meishucun and Kuanchuanpu faunas; and (5) Cambrian fossil Lagerstätten (Chengjiang, Guanshan and Kaili faunas) with typical Burgess Shale-type soft-bodied preservation.

You do not currently have access to this article.