Abstract

Alkaline rock and carbonatite complexes, including the Prairie Lake complex (NW Ontario), are widely distributed in the Canadian region of the Midcontinent Rift in North America. It has been suggested that these complexes were emplaced during the main stage of rifting magmatism and are related to a mantle plume. The Prairie Lake complex is composed of carbonatite, ijolite and potassic nepheline syenite. Two samples of baddeleyite from the carbonatite yield U–Pb ages of 1157.2±2.3 and 1158.2±3.8 Ma, identical to the age of 1163.6±3.6 Ma obtained for baddeleyite from the ijolite. Apatite from the carbonatite yields the same U–Pb age of ~1160 Ma using TIMS, SIMS and laser ablation techniques. These ages indicate that the various rocks within the complex were synchronously emplaced at about 1160 Ma. The carbonatite, ijolite and syenite have identical Sr, Nd and Hf isotopic compositions with a 87Sr/86Sr ratio of ~0.70254, and positive εNd(t)1160 and εHf(t)1160 values of ~+3.5 and ~+4.6, respectively, indicating that the silicate and carbonatitic rocks are co-genetic and related by simple fractional crystallization from a magma derived from a weakly depleted mantle. These age determinations extend the period of magmatism in the Midcontinent Rift in the Lake Superior area to 1160 Ma, but do not indicate whether the magmatism is associated with passive continental rifting or the initial stages of plume-induced rifting.

You do not currently have access to this article.