Nearly 70 new Nd isotope analyses are presented for plutonic orthogneisses from the Grenvillian Central Metasedimentary Belt (CMB) in order to test a back-arc aulacogen model for its origin. Nd isotope signatures of metaplutonic rocks are used as probes of the formation age of the crust at depth, revealing sharp boundaries between old crustal blocks and juvenile (1.2–1.35 Ga) Elzevirian-age crust. Firstly, a hidden block of old crustal basement is revealed between areas of juvenile crust south of Douglas, Ontario. Secondly, TDM ages refine the boundary between juvenile crust and old basement (1.35–1.55 Ga) within the Weslemkoon batholith, showing this pluton to be a polygenetic stitching pluton that straddles a hidden crustal boundary. Finally, the CMB boundary zone is shown to form a sharp age boundary between juvenile and old crustal domains, and is interpreted as a reactivated rift-bounding normal fault. When the distribution of rift-related alkaline rocks is compared with these crustal boundaries, the Bancroft nepheline syenite suite is centrally located in a juvenile ensimatic zone between blocks of old basement. Such a location, near the axis of a juvenile crustal segment, implies emplacement late in the rifting process. Similarly, the Blue Mountain nepheline syenite appears to post-date an earlier rifting event to the southeast. Hence, a multi-stage model is proposed for the evolution of a back-arc aulacogen, which is consistent with the distribution of marble and volcanic/plutonic units in the CMB. The model places the Bancroft nepheline syenites in a precise plate tectonic context for the first time.

You do not currently have access to this article.