Abstract

Cretaceous granites are widespread in the North Dabie orogen, Central China, but their emplacement sequence and mechanism are poorly known. The Tiantangzhai Complex in the North Dabie Complex is the largest Cretaceous granitic suite consisting of six individual intrusions. In this study, zircon U–Pb ages are used to constrain the crystallization and protolith ages of these intrusions. The Shigujian granite is a syn-tectonic intrusion with an age of 141 Ma. This granite was emplaced under a compressional regime. Oscillatory rims of zircons have yielded two peaks at 137±1 Ma and 125±1 Ma. The 137±1 Ma peak represents the beginning of orogenic extension and tectonic collapse, whereas the 125±1 Ma peak represents widespread granitic magmatism. Zircon cores have yielded concordant ages between 812 and 804 Ma, which indicate a crystallization age for the protolith. The Tiantangzhai granites show relatively high Sr contents and high La/Yb and Sr/Y ratios. The Shigujian granite has positive Eu anomalies resulting from partial melting of a plagioclase-rich source in an over-thickened crust. Correspondingly, in situ Lu–Hf analyses from zircons yield high negative εHf(t) values from −24.8 to −26.6, with two-stage Hf model ages from 2748±34 to 2864±40 Ma, suggesting that the magmas were dominantly derived from partial melting of middle to lower crustal rocks. The Dabie orogen underwent pervasive NW–SE extension at the beginning of the early Cretaceous associated with subduction of the Palaeo-Pacific plate beneath eastern China.

You do not currently have access to this article.