This paper presents quantitative data on the finite strain, quartz crystal fabric, geometry of flow and deformation temperatures in deformed quartzite samples to characterize the ductile deformation along the thrust sheets constituting the Sanandaj–Sirjan Metamorphic Belt within the Zagros Mountains of Iran. The results of this study emphasize the heterogeneous nature of deformation in this belt, showing a spatial variation in strain magnitude and in degree of non-coaxiality. A dominant top-to-the-SE sense of shear is indicated by the asymmetry of microstructures and quartz c-axis fabrics. Quartz c-axis opening angles suggest deformation temperatures range between 435° ± 50°C and 510° ± 50°C, which yield greenschist to amphibolite facies conditions during the ductile deformation. Mean kinematic vorticity number (Wm) measured in the quartzite samples ranges between 0.6 and 0.9 with an average of 0.76, which indicates that extrusion of the metamorphic rocks of the region was facilitated by a significant component of pure shear strain. Traced towards the basal thrust of the Zagros Thrust System from northeast to southwest, the quartz grain fabrics change from asymmetric cross-girdle fabrics in the internal part of the deformation zone to an asymmetric single-girdle fabric at distances close to the basal thrust. This variation may depend on the structural depth and on the geometry of the ductile deformation zone. The observed increase in strain and vorticity within the study area is comparable with patterns recorded within metamorphic rock extrusions within other orogens in the world.

You do not currently have access to this article.