Geochemical studies of the six lowermost lava flows of the Cretaceous Serra Geral Formation (Paraná volcanic province) in Quaraí (Brazil) and Artigas (Uruguay) were combined with flow-by-flow field studies of structures and scintillometric profiles to establish a consistent regional stratigraphic framework over at least 100 km. This greatly improves exploration capability for amethyst and agate geodes. A basalt, colada Mata Olho (Alegrete facies, Serra Geral Formation), was the first lava to flow over the ancient Botucatu desert in the region, but an andesite, colada Catalán, overstepped this basalt in many places, perhaps palaeohighs. Four basaltic andesites complete the lava stratigraphy in this formation, adding up to 300 m of lavas. The stratigraphic sequence of contrasting lava compositions is 51.0 wt% SiO2 in the first lava, followed by 57.5, 52.5, 56.0, 53.0 and finally 54.5 wt% SiO2. Overall MgO variation is between 2 and 7 wt%. All lavas in the two districts are low-Ti (<2.0 wt% TiO2) of the Gramado type. The characteristic contents of most major and trace elements (124 rock samples analysed) allow the ready identification of each lava. Contrasting rock chemistry also results in strong variation in scintillometric values (270 points measured in the field and nineteen continuous borehole profiles); from bottom to top of the stratigraphy, the cps values are 49±3.2, 123±10.3, 62±4.7, 94±4.6, ~45 and ~85. Colada Catalán has the structure of aa lava, particularly the contorted igneous banding and autobreccias in the upper and lower crusts. In some places, a 2 m thick, silicified sandstone layer lies on top of some coladas, and silicified sandstone forms breccias with volcanic rocks. Geochemistry of the six lavas indicates complex evolution, involving melting of lithospheric mantle, injection into the crust and assimilation of crust followed by fractional crystallization. This study indicates the possibility of world-class deposits of amethyst geodes on the Brazilian side of the border with Uruguay.

You do not currently have access to this article.