Abstract

Integrated palynological, organic and inorganic geochemical and petrographical methods have been used for deciphering the depositional redox conditions and character of organic matter of the Famennian Dasberg event horizon from the deep-shelf Kowala succession of the Holy Cross Mountains. The ages of the investigated samples have been established, using miospore data, as VF (Diducites versabilis–Grandispora famenensis) and LV (Retispora lepidophyta–Apiculiretusispora verrucosa) miospore Zones of the Middle/Upper Famennian. In the standard conodont zonation, this corresponds to the uppermost postera to lowermost praesulcata Zones. The presence of green sulphur bacteria biomarkers and dominance of small-sized framboids together with the presence of large framboids and low values of the U/Th ratio may indicate that during sedimentation of the lower Dasberg shale, intermittent anoxia occurred in the water column, or the anoxic conditions prevailed in the upper part of the water column, while the bottom waters were oxygenated, at least briefly. Deposition of the upper Dasberg shale was characterized by both bottom water and water column anoxia. The lack of acritarcha taxa from these intervals could have been due to anoxia in the photic zone. Moreover, organic content is high in those samples. There is no geochemical evidence for anoxia during sedimentation of the deposits sandwiched between the lower and upper Dasberg shales, or in the deposits which underlie and overlie both Dasberg shale horizons. The two discrete anoxic events are interpreted to be the result of major transgressions and the blooming of primary producers. Above the Dasberg shales, small fragments of charcoal and raised concentrations of polycyclic aromatic hydrocarbons are detected. This supports the presence of wildfires during deposition of shales just above the boundary of VF/LV palynological zones. Temperatures calculated from the fusinite reflectance values suggest that the charcoal was formed in low-temperature ground and/or surface fires. The typical marine character of sedimentation combined with the high proportion of charcoals suggests that wildfires were large-scale, and that there was intensive transport of terrestrial material. The main causes of intensive wildfires were a significant rise of O2 in the atmosphere and important progress in the land plant diversity during Late Devonian times. Palynofacies studies suggest that the transgression corresponds to the part IIf of the Late Devonian sea-level curve.

You do not currently have access to this article.