Abstract

Stratigraphic fluctuations of carbon isotope values of terrestrial organic matter within the Upper Cretaceous (Cenomanian–Santonian) sequence in the Obira area of Hokkaido, Japan, record distinctive δ13C fluctuations for the Cenomanian–Turonian boundary, the Middle Turonian, the upper Turonian–lower Coniacian, and the Santonian. A biostratigraphic framework of the age-diagnostic taxa (ammonoids, bivalves and planktic foraminifers) indicates that these δ13C fluctuation events are comparable with those recorded in δ13C data of terrestrial organic matter in Japan and marine carbonates in Europe. These correlations reinforce the utility of these δ13C events in terms of global chemostratigraphy. In particular, the δ13C patterns within the overall positive interval of the Cenomanian–Turonian boundary event are highly conformable between marine and terrestrial records. The consistent nature of these different records of δ13C fluctuation patterns demonstrates that the terrestrial organic δ13C data mirror the global-scale δ13C patterns in the carbon reservoir of ocean–atmosphere–terrestrial biosphere during the Cenomanian–Turonian boundary event. In addition, global correlation of short-term marine and terrestrial organic δ13C fluctuations of the Upper Cretaceous sequence indicate that the magnitude of several terrestrial organic δ13C events appears more amplified than that of coeval marine carbonate δ13C events. This correlation is interpreted to mean that the effects of local CO2 emission into the atmosphere by release of terrestrial methane hydrate or biomass burning of terrestrial vegetation in the hinterland of the NE Asian region have been superimposed on the global δ13C trend and resulted in the terrestrial organic δ13C records of the Yezo Group.

You do not currently have access to this article.