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ABSTRACT

A field survey was carried out in 2012 focusing on the tectonic position and the 
role of Upper Triassic (Upper Norian–Rhaetian) Avroman Formation outcrops 
located in the Zalm area of Iraq, close to the Iraq-Iran border. At this location, the 
Cretaceous chert-bearing strata of the Qulqula Formation are overlain by sheared 
mafic bodies, which are in turn topped by the cliffs of the megalodontaceae-
bearing Upper Triassic Avroman Formation. Similarities in lithology, sequence 
and tectonics position, suggest that the Triassic section of the Bisotoun Unit from 
the Kermanshah Zone of Iran can be used as a tectonic analogue of the Avroman 
Formation. According to our model, both the Avroman and the Bisotoun 
units formed an intra-oceanic carbonate platform, built-up by a characteristic 
megalodontaceae-bearing carbonate platform assemblage during the Late Triassic.

The Harsin oceanic basin, which separated the Avroman-Bisotoun Platform 
from the Arabian Platform, was characterised by deep-marine sedimentation, 
the remnants of which form the Qulqula Formation in Iraq, and the Radiolaritic 
Nappe and the Harsin Mélange in the Kermanshah Zone. This tectonic setting 
is not unique; numerous authors suggest the existence of an oceanic rim basin, 
separating carbonate platform units (e.g. Oman ‘exotics’) from the Arabian 
Platform. The age of the deformation could be Late Cretaceous (Maastrichtian), 
but using analogues from Iran, a Palaeogene deformation also seems possible.

The Avroman Formation was interpreted to be a Dachstein-type sediment, 
similar to the well-studied Dachstein Formation of the Northern Calcareous Alps, 
Austria. Rock units, with similar lithology, or identical depositional environment 
and macroscopic fauna, were described by numerous authors along the Neo-
Tethys suture zone from Austria to Japan, and from several tectonic units along 
the Panthalassa margin. The implication of this correlation is important for future 
studies: using well-described type localities of the marine units from the Northern 
Calcareous Alps as a reference, it is possible to significantly extend the available 
background knowledge, and to gain better insight into the Triassic regional 
depositional environment of the Middle East.

INTRODUCTION

The Zagros-Taurus Mountains formed during the Cretaceous to Recent collision between the Arabian 
and Eurasian plates. In Iraq and Iran, they are comprised of six tectonic zones oriented parallel to the 
Arabian-Eurasian plate boundary, as follows (Figure 1): (1) the Mesopotamian Foredeep/Arabian 
Gulf (part of the Arabian Plate), (2) the Zagros Fold-and-Thrust Belt, (3) the Outer Zagros Ophiolitic 
Belt, (4) the Sanandaj-Sirjan Zone, (5) the Inner Zagros Ophiolitic Belt, and (6) the Urumieh-Dokhtar 
Magmatic Arc (Stocklin, 1968; Shafaii Moghadam and Stern, 2011). Surface folding and thrusting 
occurred mainly during the Pliocene phase of orogeny, although evidence exists in the surrounding 
area for earlier, pre-Miocene, extensional and compressional episodes.

This paper presents new geological information from the Zalm area, Kurdistan Region of northern 
Iraq, in the NW continuation of the Kermanshah Zone of the Outer Zagros Ophiolitic Belt (Figures 
1 and 2). The majority of the investigated sections are dominated by an Upper Triassic platform 
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Figure 1: (b) Geological map of the Zagros Suture Zone along the Iraq-Iran border, showing the 
location and tectonic division of the study area (after Ali, 2012). 

Figure 1: (a) Structural divisions of the Zagros Fold-and-Thrust Belt with the position of the Inner 
and Outer Zagros Ophiolitic Belt. 
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carbonate named the Avroman Formation. This name 
was first introduced by Bolton (1958a) and relates to 
the carbonate sequence described from the Avroman 
Mountains near Halabja, Kurdistan Region of Iraq, which 
forms a NW-trending mountain range near the Iraq-Iran 
border (Sissakian, 2000).

The Avroman Formation comprises 800 m of light-grey, 
thick-bedded to massive limestone with minor amounts 
of clastic content. Microfacies indicators, such as bioclasts, 
ooids, lamination, algae and bioturbation, support an 
interpretation of a subtidal to peritidal environment (e.g. 
Bolton, 1958a; Buday, 1980; Karim, 2007). Alkali olivine 
basalt dykes and trachyte also occur in the formation, 
most likely related to Tethyan volcanic activity (von 

Richthofen, 1860; Pisa, 1974; Viel, 1979; Brack and Rieber, 1993). An abundance of megalodontaceae 
and foraminifera were described from this lithological unit, including for example, Gemmelarodus 
seccoi seccoi and Triasina hantkeni, which indicate a Late Norian–Rhaetian age (cf. Jassim and Goff, 
2006). A similar lithological unit, the Ubaid Formation, which yielded Neomegalodon sp. in Wadi 
Hauram in southern Iraq, may be coeval to Avroman Formation (Karim and Ctyroky, 1981; Jassim 
and Goff, 2006; Sissakian and Mohammed, 2007).

Figure 2: (a) Tentative cross-section of the Kermanshah
Zone with rock names (black) after Wrobel-Daveau, et al. 
(2010). The blue unit names are their equivalent units from
Kurdistan Region of Iraq, using the nomenclature of this 
study. (b) Synthetic stratigraphic log of the Bisotoun Unit in 
Kuh-e Bisotoun (simplified after Braud, 1978). See Figure 1 
for locations.
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Figure 3: (a) Topographic map of the Halabja area, and (b) geological map of the Zalm Valley.
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This paper focuses on the tectonic and stratigraphic role of the Avroman Formation (Figures 1 and 2). 
Our main goals are to: (1) extend local observations on the structural relationship and deformation 
history of the investigated units in the Zalm area to a larger scale; (2) confirm their Upper Triassic 
tectonic position by investigating the correlation of these units to those seen in the Kermanshah 
Zone of Iran. The Kermanshah Zone seems to be a valid structural analogue of the investigated Zalm 
section (Wrobel-Daveau et al., 2010; Shafaii Moghadam and Stern, 2011; Figure 2). (3) We correlate 
the characteristic megalodontaceae-bearing sediments of these units to the Circum-Tethyan realm, 
especially to the well-studied and described Austrian equivalents.

ZALM VILLAGE SECTION, NORTHEASTERN KURDISTAN, IRAQ

Close to Zalm Village in the Avroman Mountains (Figure 3), a deformed sequence of the Avroman 
Formation (Figures 4 and 5) crops out. Three Avroman tectonic units (Lower, Middle and Upper 
Avroman units) were identified. The section is intensely folded, and thrusted onto the younger 
Mesozoic Qulqula Formation (Karim and Baziany, 2007; Ma’ala, 2008; Al-Qayim et al., 2012; Davies 
et al., 2014; Ali et al., 2014) along a sheared mafic body (Lower Mafic Body). A second sheared mafic 
body (Upper Mafic Body) was observed between the Lower and Middle Avroman units.

1m

Thrust plane

Upper Avroman Unit
(Thick-Bedded Avroman Member)

Lower Avroman Unit

(Thick-Bedded Avroman Member)

Lower Mafic BodyLower Mafic Body

Qulqula Formation

West-Southwest East-Northeast

Lower Avroman Unit

Figure 4: View and geological interpretation of the Lower Mafic Body and its surroundings. 
Photo by Agoston Sasvari. 

Sedimentological Observations

Qulqula Formation
Samples from the Qulqula Formation (Enclosure Ia–d) have been petrographically evaluated 
and described as planktonic foraminifera-rich wackestones with 50% lime mud content. Original 
grains are rare (approximately 5%) but they include planktonic foraminifera, globigerinids, sponge 
spicules and skeletal debris. The vast majority of grains (particularly the planktonic foraminifera 
and globigerinids, the dominant grain types) have been recrystallised. Primary calcite microspar has 
cemented the pore structures within the thin-walled globigerinid foraminifera (ca. 10%). Grains have 
been replaced by a later phase of calcite microspar (ca. 15%) and non-ferroan calcite (ca. 5%). A large 
fracture system fans out and splits into several smaller veins. It is cemented by non-ferroan calcite (ca. 
10%). There are also a small percentage of stylolites (< 1%).
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Avroman Formation
Based on the field observations (Figures 4 to 6 and Enclosure I) the Avroman Formation is not 
lithologically uniform from a stratigraphic or sedimentological point of view. It consists of the lower 
“Thick-Bedded Avroman Member”, and the upper “Thin-Bedded Avroman Member”. Historically, 
these members have been mapped and described as a single formation (e.g. Sissakian, 2000; Karim, 
2007).

Thick-Bedded Avroman Member
This member consists of megalodontaceae-bearing, white to light-grey, light-yellowish metre-thick 
beds of limestone (Enclosure Ih, i and k). Complete megalodontaceae and a significant amount of thick 
shell fragments were found, indicating a subtidal platform or platform edge. With the exception of the 
macroscopic fossils, neither bioturbation, nor ichnofossils or sedimentary structures were found. The 
analysed samples (Enclosure I) are texturally wackestones and packstones, and the following textures 
were identified.

Peloidal wackestone-packstone: limestones containing 20–30% lime mud, the grains (10–40%) 
are peloids, which also include thin-shelled bivalves and skeletal debris. Sometimes a much 
lower percentage of original grains (10%) is observed due to a dominance of cements and grain 
replacements. A large percentage (33.5%) of early primary equant non-ferroan calcite cement and 
micritised envelopes surround some of the neomorphically recrystallised grains. Small percentage 
(3–4%) stylolitisation of these samples was observed.

Skeletal packstone: grain-supported, consisting of 20–30% lime mud and a relatively high percentage 
of neomorphically recrystallised skeletal material. There is a total of 20–30% non-replaced grains 
with peloids and skeletal debris being the dominant grain types. There are also minor amounts of 
Dasycladaceae, benthonic foraminifera, echinoids, intraclasts and thin-shelled bivalves. 20% of the 
grains have been leached and cemented by early drusy non-ferroan calcite cement, and micritic 
envelopes are also present around some recrystallised bivalves and benthonic foraminifers.

Dolomitic skeletal wackestone: upwards of 44% lime mud and 18% scattered matrix replacive 
dolomite. Remaining grains represent 12%, including skeletal debris, thin-shelled bivalves and 
bryozoans, while 17% of grains (including green algae fragments, skeletal material and bivalves) have 
been cemented or replaced by non-ferroan calcite and microspar, which have also cemented vugs.

10m

Thrust plane

Upper Avroman Unit

(Thick-Bedded Avroman Member)

Middle Avroman Unit

Upper Avroman Unit

(Thick-Bedded Avroman Member)

Upper Mafic Body

U
pp

er
 M

afi
c 

B
od

y

West-Southwest East-Northeast

Middle Avroman Unit
(Thick-Bedded Avroman Member)

Figure 5: View and geological interpretation of the Upper Mafic Body and its surroundings. 
Photo by Agoston Sasvari. 
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Figure 6: Geological cross section of the Zalm area.
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Thin-Bedded Avroman Member
This member consists of well-bedded, decimetre-thick beds (ca. 10–20 cm) of light-brown to medium-
grey, slightly nodular limestone with small-scale spherical grains, ooids, bioclastic debris of algae 
and echinoderms, oncoids or probably peloids (Enclosure Ij, l and m). Minor stylolitisation was 
observed. The spherical clasts are completely recrystallised, well rounded, poorly sorted, and from 
field observations, calcareous in nature. No macroscopic fossils were observed, and except for the 
spherical components, the texture is micritic. At one location, a slightly nodular bed surface was 
observed.

In thin-section view, the Thin-Bedded Avroman Member can be described as an oolitic, mud-lean 
packstone, which primarily consists of neomorphically recrystallised ooids (and secondary peloid 
grains), which make up 60% of the rock. They have been cemented by blocky non-ferroan calcite, 
micritised envelopes formed around a number of grains. The matrix in parts has also been replaced 
by microspar and there is only 10% lime mud remaining. The remaining original grains equate to just 
6% of the whole rock composition, with peloids, intraclasts, gastropods and faecal pellets (Favrina).

Structural Geological Observations

Because of the folding, the steepness of the gorge walls and the loose blocks, the structural elements 
were not clearly visible in the field. Accordingly a combination of field observations and satellite 
image interpretations were used to interpret a sequence of structures both as a geological map (Figure 
3) and cross section (Figure 6). Three important deformation zones occur in the study area, and are 
interpreted as detachment planes below and in between the deformed Avroman units (Figures 3 to 6 
and Enclosure I).

(1) Sheared mafic rocks, forming the Lower Mafic Body, were observed at the contact of the Qulqula 
Formation to Lower Avroman Unit (Figure 4, Enclosure Ie–f).

(2) Sheared mafic rocks, forming the Upper Mafic Body, were mapped at the contact of Lower to 
Middle Avroman units (Figure 5, Enclosure In and o).

(3) The third deformation zone occurs at the contact between the Middle to Upper Avroman units 
(Figures 3 and 6), and is mainly interpreted from remote field observations and satellite images. 
Detailed observations were not possible in the area due to the large number of unexploded objects 
and the proximity of the state border.
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Lower Mafic Body between the Qulqula Formation and Lower Avroman Unit
The first deformation zone was identified immediately above the dark-grey radiolaritic Qulqula 
Formation (Bolton, 1958b; van Bellen et al., 1959; Figures 3, 4, 6 and Enclosure Ie–g), which forms 
the lowermost part of the section. The age of this formation is poorly constrained; Karim et al. (2009) 
assigned a Late Cretaceous (Early Maastrichtian) age. The topmost chert beds are overlain by sheared 
mafic rocks of the Lower Mafic Body; this contact is close to the NE edge of Zalm. Due to recent road 
constructions, the contact has become visible, but the relationship of the chert to mafic material is 
not visible. The Lower Mafic Body (Figure 4) is slightly weathered and subsequent alteration has 
obscured its internal structures. The estimated thickness of the Lower Mafic Body is approximately 
60–80 m.

Thick-bedded, megalodontaceae-bearing limestones of the Lower Avroman Unit overlie the Lower 
Mafic Body (Figures 3, 4, 6 and Enclosure I). The contact between the mafic body and carbonates 
is structural and not sedimentological. The lowermost bed of the thrusted Lower Avroman Unit is 
nearly parallel to the NE-dipping thrust plane. Significant change in the bedding is observed from the 
Qulqula Formation to the Lower Avroman Unit outcrops: the Qulqula Formation beds are tilted by an 
average about 45˚ to the SW whereas the Avroman beds dip by about 40˚ to the NE.

SE-vergent thrusting is indicated by the great number of detachment planes, the geometry of shear 
indicators, the overall geometry of the ophiolitic body, as well as the geometry and bedding of the 
overlying Lower Avroman Unit limestone (Figure 6).

Upper Mafic Body between the Lower and Middle Avroman Units
The second deformation zone was observed between the Lower and Middle Avroman units, 
approximately 700 m ENE from Zalm Village (Figures 3, 5, 6 and Enclosure I). Both of these units dip 
70–85˚ to the ENE, and are separated by the Upper Mafic Body. The contact between the carbonate 
and mafic body is partially obscured, but the overall linear geometry of the mafic is clearly visible, 
both in the landscape and on the satellite imagery.

Loose blocks, most likely sourced from this mafic body, are found in the surroundings of the upper 
mafic detachment plane, and cubic metre-size, unsorted, polymictic, clast-supported chert breccia 
blocks are also observed at this location. The clast material is dominated by chert and limestone 
with subordinate amounts of rectangular mafic clasts. No sedimentological structures (bedding, 
gradation) were observed.

The position and the geometry of the sheared mafic body, as well as the bedding geometry of both the 
Lower and Middle Avroman units, can be used to identify SE-vergent thrusting, parallel to the Lower 
Mafic Body geometry.

Contact between the Middle to Upper Avroman Units: Indication of a Young Overthrust?
The Middle Avroman Unit is tectonically uniform (Figures 3, 6 and Enclosure I), with no visible internal 
thrust planes and/or sheared mafic bodies. Elevated cliffs with almost horizontal and tectonically 
undisturbed bedding, tilted slightly to the SW, overlie both the highly folded Lower and Middle 
Avroman units. According to field observations, this Upper Avroman Unit is composed of the same 
thick-bedded carbonates as the Lower and Middle Avroman units, and despite the lack of outcrop 
data, this carbonate unit can be associated with the Avroman Formation. The Upper Avroman Unit is 
less deformed, and structurally cuts the folds of both Lower and Middle Avroman units.

BASIN-SCALE INTERPRETATION AND DISCUSSION

In the recent tectonic model, which is in agreement with Ali (2012) and Ali et al. (2014), the 
Kermanshah Zone (Figure 2) was used as a structural and sedimentological analogue of the Zalm 
section. Palaeo-facies correlation of the investigated units helped reconstruct the palaeo-tectonic 
position and deformation of the structural units of the study area (Figure 7). The significance of 
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the Kermanshah Zone deformation model is to illustrate the existence of the Triassic Harsin Basin 
equivalent in Kurdistan, separating the Arabian Platform from the intra-oceanic Bisotoun Unit (e.g. 
Wrobel-Daveau et al., 2010). The basal part of the Bisotoun Unit is built up by megalodontaceae-
bearing platform carbonates (Braud, 1978, 1989), which are similar to the Avroman Formation (see 
below).

The position, stratigraphic tectonic sequence, as well as tectonic model for the Kermanshah Zone 
are not unique. A similar model for the Oman ‘exotics’ (e.g. Béchennec, 1987; Béchennec et al., 1990; 
Pillevuit et al., 1997) suggests the existence of an oceanic rim basin, separating a carbonate platform 
unit from the Arabian Platform margin (Figure 7). In this early model, a bipartite nature of the 
Hawasina branch of the Neo-Tethys Ocean was interpreted. The original model was to assume a chain 
of platforms in the middle of the Hawasina branch (Oman ‘exotics’ and Kawr Group, equivalent of 
the Bisotoun Unit), separating the Hamrat Duru Basin (equivalent of the Harsin Basin) and the Umar 
Basin.

Tectono-sedimentary Units of the Kermanshah Zone

The Kermanshah Zone in Iran is exposed along the Main Zagros Thrust, and is composed of the 
following elements (Wrobel-Daveau et al., 2010; Shafaii Moghadam and Stern, 2011; Figures 2, 7 and 8a).

The Radiolaritic Nappe interpreted to be the substratum of a continental rim basin (Harsin 
Basin, Ricou et al., 1977; Braud, 1978, 1989), separating the carbonate dominated Bisotoun Unit 
(see below and Figures 7 and 8a) from the Arabian Platform. According to Gharib (2009), its age 
is early Pliensbachian to early Turonian. In the Early Jurassic–Cenomanian period, sedimentation 
remained cherty in the Harsin Basin, and was controlled by carbonate deposition in the Bisotoun 
Unit. The Qulqula Formation in the Avroman Mountains area of northern Iraq was associated to the 
‘Kermanshah Radiolarite’ by Ali et al. (2014) (Figures 2 and 8).

The Harsin Mélange composed of serpentinites, radiolarites, lava beds and carbonate blocks. The 
Harsin Ophiolite, SW of the Bisotoun Unit, is seen as the oceanic crust of a small basin between the 
Arabian and the Bisotoun Unit (Figures 2, 7 and 8a).
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Figure 8: Sequence of deposition and deformation in: (a) Kermanshah Zone, and (b) Zalm area. Red 
lines indicate thrusting age and vergency; blue units are the equivalents of the Dachstein 
Formation on the Northern Calcareous Alps. Dashed lines and polygons indicate assumed thrust 
planes and units.

The Bisotoun Unit is composed of 1,500–3,000 m-thick Upper Triassic–Cenomanian platform 
carbonates, with megalodontids in the Triassic section (Braud, 1978, 1989). Ricou et al. (1977) and 
Braud (1978, 1989) suggested the existence of a radiolaritic trough (Harsin Basin), separating the 
Bisotoun Unit from Arabia since the Late Triassic (Figure 7). The nature of the original substratum 
beneath the Bisotoun Unit remains unknown but is assumed to be continental crust (Braud, 1978, 
1989). Such a limestone, deposited in a shallow-water environment over more than 100 million years, 
could be consistent with a continental substratum (Wrobel-Daveau et al., 2010). In their work, Ali et 
al. (2014) assumed the same tectonic position for the Avroman Mountains in the Zalm area as for the 
Bisotoun Unit, and interpreted them as the same structural unit (Figures 2 and 8).

The Saneh-Shahabad Ophiolite has an intra-plate oceanic island arc to island arc chemical signature 
(e.g. Desmons and Beccaluva, 1983) and has been assigned a Late Cretaceous age (Figures 2, 7 and 8). 
Ali et al. (2014) associated this ophiolitic body with a mafic unit, tectonically overlying the Avroman 
Formation in the Avroman Mountains.

The above noted units (called ‘Cretaceous Nappes’ after Braud, 1978) were emplaced during the 
first, Campanian obduction in Iran (Braud, 1978; Homke et al., 2009), and Oman (e.g. Boote et al., 
1990; Warburton et al., 1990; Breton et al., 2004), and are unconformably overlain by the Oligocene–
Miocene Qom Formation (Figure 8a). In a subsequent phase of deformation, both the Cretaceous 
Nappes and the Qom Formation were folded and thrusted, together with Cenozoic turbidites and 
pelagic limestones, as a result of the second collision between the Central Iran Block and the Eocene 
arc (e.g. Leterrier, 1985).

Different models were proposed to explain the origin, evolution and tectonic position of these units. 
Agard et al. (2005) consider that the Bisotoun Unit is a tectonic window located in the footwall of the 
Saneh-Shahabad south-verging thrust. In their model, the thrusting of the Bisotoun Unit is a late and 
out-of-sequence deformation event.
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In the model of Wrobel-Daveau et al. (2010), the Bisotoun Unit is the cover of a micro-continental 
block and not a tectonic window. This unit is thrusted between the Tethyan units (Saneh-Shahabad 
Ophiolite) and the Harsin Basin (exhumed mantle and its radiolarite filling). According to Wrobel-
Daveau et al. (2010), two oceanic domains are proposed for the evolution of the Kermanshah Zone. 
One domain is the Harsin Basin (continental rim basin) separating the Arabian Platform and the 
Bisotoun Unit, and a second, the Neo-Tethys Ocean, initially located northeast of the Bisotoun Unit.

Qulqula Formation

In the case of the Qulqula Formation, the large percentage of lime mud, planktonic foraminifera 
including globigerinids, indicative of a pelagic, relatively deep-marine, sub-wavebase environment. 
These results are in agreement with the observations of Karim (2007) and Karim et al. (2007). 
According to Ali (2012) and Ali et al. (2014), the Qulqula Formation is interpreted as the equivalent of 
the Radiolaritic Nappe of the Kermanshah Zone from both depositional and tectonic points of view. 
Using this analogue, the Qulqula Formation is a good indicator of the same rim basin as interpreted 
by Wrobel-Daveau et al. (2010); in the same way, the Qulqula Formation can be interpreted as a 
tectonically affected remnant of the Harsin Basin.

Lower and Upper Mafic Bodies

Both the Lower and Upper Mafic Bodies are believed to represent a significant tectonic contact below 
and in between the Avroman units. The available geological information does not allow excluding 
a more complex tectonic position: an overturned Lower Avroman Unit topped by overturned mafic 
fragment, or a more complex tectonic window position (Agard et al., 2005). However, according to 
our structural observations, these scenarios are unlikely. If we use the Kermanshah Zone as a model 
for the Zalm region, the tectonic significance of the Lower Mafic Body is crucial: this unit could be 
indicative of a fragment of the oceanic basement either below the Qulqula Formation, and/or the 
mafic basement of the Lower Avroman Unit, and in this scenario, it may be an equivalent of the 
Harsin Mélange of the Kermanshah Zone. The Upper Mafic Body can be interpreted as an out-of-
sequence, back-thrusted fragment of the Lower Mafic Unit. An alternative interpretation is that the 
Upper Mafic Body is an exhumed mafic ‘basement’ of the Avroman Formation.

Avroman Formation

The peloidal wackestone and packstone samples described from the Avroman Formation are part of 
a back-shoal, subtidal setting. The presence of green algae in samples of this formation may indicate a 
lagoonal environment. The overall microfacies type indicates shallow, inner-neritic environment with 
relatively high water energy. The overall diagenetic history for the Avroman Formation shows early 
leaching and cementation of the grains by an equant calcite spar, with some later grain replacements 
and finally followed by mechanical and chemical compaction, forming the fracture systems and 
stylolites.

Both lithological characteristics and the tectonic position of the Avroman Formation confirms its 
correlation to the megalodontaceae-bearing ‘Bisotoun Formation’ of the basal part of the Bisotoun 
Unit in the Kermanshah Zone, in agreement with the observations of Ali (2012) and Ali et al. (2014). 
Taking these observations and interpretations of both the radiolaritic and the sheared ophiolitic units 
into consideration, the Avroman Formation could have formed an ‘exotic’ block, separated by the 
Harsin Basin from the Arabian Platform. In this case both the Qulqula Formation and the Avroman 
Formation have oceanic basement and are not continental.

Despite the good tectonic and stratigraphic correlation, the Avroman Formation could only be a good 
equivalent of the lower part of the Bisotoun Unit (Enclosure I). According to the previous and recent 
observations (e.g. Bolton, 1958a; Buday, 1980; Jassim and Goff, 2006; Karim and Baziany, 2007; Karim, 
2007), both the thickness and the confirmed age of the Avroman Formation seem to be different 
from those from the original Bisotoun Unit in Iran. The youngest age reported from the Avroman 
Formation is Rhaetian (Jassim and Goff, 2006) and its maximum thickness (Bolton, 1958a) is about 
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300 m. In the case of the Bisotoun Unit (e.g. Ricou et al., 1977; Braud, 1978), the youngest observed 
age was Late Cretaceous (Cenomanian and younger), and the lithological succession is much thicker 
(1,500–3,000 m).

Several interpretations can explain these differences: (1) The Zalm section is complete, and assumed 
younger units (with Early Jurassic to Cenomanian age) were eroded. (2) The Zalm section could be 
incomplete, and younger units (with Early Jurassic to Cenomanian age) could be expected in the 
area close to the Iraq-Iran border or in Iran. (3) The Bisotoun Unit type section (Braud, 1978, 1989) 
is tectonically disturbed and the Jurassic and Cretaceous units are not in an allochthonous position 
relative to the Upper Triassic units (this solution is shown in Figure 8a).

Age of Deformation

The age of deformation along the Lower and probably the Upper Mafic Body is younger than the 
?Late Cretaceous (Early Maastrichtian) age of the Qulqula Formation (based on Karim et al., 2009). 
In the case of these shear zones, taking the analogue from Iran into consideration, a Late Cretaceous 
(Maastrichtian) or younger thrusting age could be suggested.

The Upper Avroman Unit is less deformed than the Lower and Middle Avroman units. However, 
the Upper Avroman Unit structurally cuts the folds of both Lower and Middle Avroman units, and 
as such, structural emplacement of the Upper Avroman Unit is definitely younger than the thrusting 
of the Lower Avroman Unit. It could be assigned to the same Late Cretaceous (Maastrichtian) 
deformation age, but using the same analogue from Iran, a Palaeogene deformation is also possible 
(Leterrier, 1985).

TETHYS-SCALE SEDIMENTOLOGICAL  
INTERPRETATION AND DISCUSSION

During the Carnian a large carbonate platform system developed along both the northern and 
the southern margins of the Neo-Tethys Ocean, leading to the accumulation of km-thick platform 
carbonates (e.g. Kiessling et al., 1999) with easily identified Upper Triassic megalodontaceae fauna. 
These platform carbonates were described by numerous authors along the Neo-Tethys suture zone 
from Austria to Japan, throughout Siberia, Australia, and from several tectonic units along the 
Panthalassa margin (Enclosure II). The remains of these sediments are well preserved in the Dachstein 
area of Austria, which is the type locality of the Dachstein Formation.

In this paper, the Avroman Formation of the Zalm area is correlated to the basal part of the Bisotoun Unit 
(type section at Kuh-e Bisotoun). According to the age, fossil content and depositional environment, 
the Avroman Formation is interpreted to be a Dachstein-type sediment, similar to the well-described 
Dachstein Formation of the Northern Calcareous Alps, Austria.

As a consequence of this interpretation, the basal part of the Bisotoun Unit type section could be 
an equivalent of the Dachstein Formation as well. Possible correlation of the Ubaid Formation 
needs further clarification, but accepting the original observations of Karim and Ctyroky (1981) on 
Neomegalodon sp. fragments from the Ubaid Formation (Wadi Hauram area), the Ubaid Formation can 
also be interpreted as a Dachstein Formation equivalent.

Dachstein Formation: Sediment of the  
Dachstein-type Platforms

One of the first identified and most typical Upper Triassic carbonate platform-related units is the 
megalodontaceae-bearing Dachstein Formation. The Dachstein Nappe of the Northern Calcareous 
Alps (sensu Plochinger, 1995) is named after the small village of Dachstein, and refers to both a tectonic 
unit and a facies zone (e.g. Mandl, 2000). The Dachstein Nappe is characterised by thick-bedded 
or massive platform limestones (Dachstein Limestone of Simony, 1847) and dolomites (Dachstein 
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Dolomite and/or Hauptdolomit). This unit and its equivalents have been studied since the 19th 
Century across Austria, Germany, Italy and Hungary (e.g. Simony, 1847; Peters, 1855; Gumbel, 1862), 
and this unit was identified and documented by several authors throughout the Neo-Tethys realm 
(e.g. Kiessling et al., 1999). Megalodontids were described from several tectonic units related to the 
Neo-Tethys realm (Enclosure II), allowing us to correlate these Tethyan sediments over much of the 
Tethyan margins.

Dachstein-type platforms (Haas, 2004) were developed on rapidly subsiding passive continental 
margins, indicating regional geodynamic control. In the latest Carnian (Tuvalian), a distinct 
transgressive pulse led to widespread flooding and sedimentation on top of the Lower Carnian 
Wetterstein carbonate platforms (e.g. Tollmann, 1976). The sea-level change caused a complex pattern 
of local reef patches separated by local depressions.

In the early stage of Dachstein platform growth (Late Carnian–Late Norian), the palaeogeographic 
setting controlled the facies polarity. Opening of the Neo-Tethys Ocean resulted in a fairly uniform, 
coastline-parallel, facies zonation. The outer platform is characterised by deposition of oncoidal and 
ooidal limestones and patch reefs. In the inner platform, deposition of a cyclic bedded, intertidal 
to subtidal carbonate succession took place. The inner platform was affected by pervasive early 
diagenetic dolomitisation under the prevailing semi-arid climate resulting in the deposition of the 
‘Dachstein Dolomit’ and its equivalents (‘Hauptdolomit’, ‘Dolomia Principale’).

Chronostratigraphy of the Dachstein-type platform carbonates is based mainly on the megalodontaceae 
fauna (Végh-Neubrant, 1982): Neomegalodon carinthiacus, N. boeckhi, N. triqueter pannonicus, and 
Corcucardia hornigii hirnigii are indicative of the Carnian. The presence of Neomegalodon complanatus 
complanatus, N. guembeli guembeli, N. boeckhi, Gemmellarodus seccoi seccoi and Dicerodardium curionii 
indicate a Norian age. The locally rich foraminifera assemblage (e.g. Oravecz-Scheffer, 1987) allows 
subdivision at the stage and locally at the substage level.

CONCLUSIONS AND RECOMMENDATIONS  
FOR FUTURE STUDIES

This study confirms that the Qulqula Formation and the Avroman Formation in the Avroman 
Mountains, Iraq, have identical tectonic position to the Radiolaritic Nappe and the Bisotoun Unit 
of the Kermanshah Zone, Iran. Sheared mafic bodies between the Avroman units are interpreted 
as deformed units with oceanic crust origin, acting as a Qulqula/Avroman and intra-Avroman 
detachment planes. This study suggests the tectonic independence of the Avroman Formation from 
the Arabian Platform margin. We propose that they are separated by the northerly continuation of 
the Harsin Basin, which formed the depocentre of the Qulqula Formation. The age of the deformation 
may be Late Cretaceous (Maastrichtian), but using analogues from Iran, a Palaeogene age is also 
possible.

The Qulqula Formation was deposited in a deep-marine environment, similar to the setting of the 
Harsin Basin to the south, and is interpreted as coeval to the Radiolaritic Nappe in the Kermanshah 
Zone of Iran. The Avroman Formation is interpreted as the lateral equivalent of the basal part of the 
Bisotoun Unit of the Kermanshah Zone. These correlations are based on their age-indicative fossil 
contents, similarity of facies, and tectonic positions. The Harsin Basin may therefore have separated 
the Avroman-Bisotoun Platform from the Arabian Platform, and represents the continuation of the 
Hawasina and Hamrat Duru basins of Oman (Glennie et al., 1974; Béchennec, 1987; Béchennec et al., 
1990; Pillevuit et al., 1997).

Based on their Late Triassic age, fossil content and similar facies, the Avroman Formation and Bisotoun 
Unit could be associated with Dachstein-type deposition, similar to the Dachstein Formation of the 
Northern Calcareous Alps of Austria. Using these proposed correlations, the well-studied Alpine 
reference sections could be used to gain a better understanding of the Triassic of the Middle East and 
Peri-Tethyan regions.
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Qulqula Formation
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 Qulqula Formation:
(a) field photo of cherty Qulqula Formation;
(b)  wackestone with a lime mud matrix and an

abundance of planktonic foraminifera and 
more specifically globigerinid; 

(c) highly fractured wackestone with
globigerinids;

(d)  field photo of the upper, chert-bearing part of
the Qulqula Formation.

 Lower Mafic Body:
(e) road cut, West of Zalm Village;
(f) gabbroic, porphyritic texture with fine

plagioclase groundmass and phenocrysts of
plagioclase feldspar and heavy chlorite
overprint in green, lower mafic detachment
body;

(g) lower mafic detachment plane showing
gabbroic, porphyritic texture with fine
plagioclase groundmass and phenocrysts of
plagioclase feldspar.

 Lower Avroman Unit, Thick-Bedded Member:
(h) Megalodontid shell cut;
(i) ooidal mud-lean packstone, primarily

comprising recrystallised ooids. Peloids and
lime mud provide the remainder of the
framework with minor gastropods, faecal
pellets, green algae, echinoids and
intrabioclasts.

(k)  Cliff formed by Thick-Bedded Avroman
Member, Lower Avroman Unit.

 Lower Avroman Unit, Thin-Bedded Member:
(j) Mud-lean packstone, primarily constituting

recrystallised ooids. Peloids and lime mud 
provide the remainder of the framework with 
minor gastropods, faecal pellets and 
intraclasts. 

(l) blocky texture of sheared Avroman
Formation, indicative for bedding-parallel
deformation;

(m) thin-bedded unit of the Avroman Formation,
Lower Avroman Unit.

 Upper Mafic Body:
(n) chert and mafic rock bearing polymict breccia,

base of the Upper Mafic Body;
(o) Upper Mafic Body, over- and underlain by the

Avroman Formation.

Enclosure I: Lithological column, field pictures and 
microphotographs. Letter “Y” shows younging 
upwards direction. Photos by Agoston Sasvari, 
Andrew Mann and Jawad Afzal. 

Middle Avroman Unit: 
(p) peloidal wackestone/packstone, showing

recrystallised peloids in a lime mud matrix;
(q) skeletal packstone, comprising lime mud,

unaltered skeletal grains, in addition to grains
leached and cemented by an early drusy
non-ferroan calcite;

(r) large megalodontaceae shells on the weathered
rock surface;

(s) neomorphic skeletal wackestone with patchy
matrix replacive rhombic dolomite; lime mud is
the major constituent and the majority of the
skeletal material has been replaced by
non-ferroan calcite.
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       ENCLOSURE I
Agoston Sasvari, Laura Davies, Andrew Mann, 
Jawad Afzal, Gabor Vakarcs and Eugene Iwaniw

GeoArabia, 2015, v. 20, no. 4, p. 17-36, with 2 Enclosures
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       ENCLOSURE II
Dachstein-type Avroman Formation: 

An indicator of the Harsin Basin in Iraq
Agoston Sasvari, Laura Davies, Andrew Mann, 
Jawad Afzal, Gabor Vakarcs and Eugene Iwaniw

GeoArabia, 2015, v. 20, no. 4, p. 17-36, with 2 Enclosures
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Enclosure II (a): Norian paleogeographic position of the Dachstein Formation-equivalent megalodontaceae-bearing carbonates on a topographic and tectonic background. 

Enclosure II (b): Recent position of the Dachstein Formation-equivalent megalodontaceae-bearing carbonates on a topographic and tectonic background. See Table 1 for locations. 
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