In this study we apply multivariate statistical and predictive classification methods to interpret geochemical data from 8545 stream-sediment samples collected in southern British Columbia, Canada. Data for 35 elements were corrected for laboratory bias and adjusted for values reported below the lower limit of detection. Each sample site was attributed with the closest British Columbia MINFILE occurrence within 2.5 km. MINFILE occurrences were grouped into “GroupModels” based on similarities between the British Columbia Geological Survey mineral deposit models and geochemical signatures. These data were used to create a training data set of 474 observations, including 100 samples not attributed with a MINFILE occurrence. The training set was used to generate predictions for the mineral deposit models from which posterior probabilities were estimated for the remaining 8071 samples. The data underwent a centred logratio transformation and then characterization using either principal component analysis (PCA) or t-distributed stochastic neighbour embedding using 9 dimensions (t-SNE) prior to classification by random forests. The posterior probabilities generated from the t-SNE metric provide a slightly higher level of prediction accuracy compared to the posterior probabilities obtained using the PCA metric. The results are comparable to those obtained using a conventional catchment analysis approach and expert-driven model. The approach presented here provides a repeatable, consistent and defensible methodology for the identification of prospective mineralized terrains and mineral systems.

You do not currently have access to this article.