Abstract

The Patterson Lake corridor (PLC) in the southwestern margin of the Athabasca Basin hosts several high-grade uranium deposits. These deposits are located in the basement up to 900 m below the unconformity surface, raising questions about their affiliation with typical unconformity-related uranium (URU) deposits elsewhere in the basin. Based on cross-cutting relationships four pre- and three syn- to post-mineralization quartz generations were identified. Fluid inclusion analyses indicate that pre-mineralization fluids have salinities ranging from 0.2 to 27.2 Wt% NaCl equiv. (avg. 9.0 Wt%), whereas syn-mineralization fluids have salinities ranging from 8.8 to 33.8 Wt% NaCl + CaCl2 (avg. 25.4 Wt%), with NaCl- and CaCl2-rich varieties. The homogenization temperatures (Th) of fluid inclusions from pre-mineralization quartz range from 80 ° to 244 ℃ (avg. 147 ℃), and from syn-mineralization quartz range from 64 ° to 248 ℃ (avg. 128 ℃). Fluid boiling is indicated by the co-development of liquid-dominated and vapor-dominated fluid inclusions within individual fluid inclusion assemblages (FIA) from the syn-mineralization quartz and is related to episodic fluid pressure drops caused by reactivation of basement faults. Our results indicate that composition and P-T conditions of the ore fluids in the PLC are comparable to those of typical URU deposits in the Athabasca Basin, indicating that the uranium deposits in the PLC formed under similar hydrothermal conditions. Episodic reactivation of basement faults was an important driving force to draw uraniferous fluids from the basin and reducing fluids from the basement to the mineralization sites, forming deep basement-hosted deposits.

Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathways

Supplementary material:https://doi.org/10.6084/m9.figshare.c.5510179

You do not currently have access to this article.