All minerals having a crystal structure and a chemical composition that can be described as a regular combination of modules of epidote-type structure (E) and modules of törnebohmite-type structure (T) fulfil the criteria of forming a mineral supergroup, named the gatelite supergroup. All members share the same general formula and topology, consisting of edge-sharing octahedral chains, cross-linked to each other by SiO4 and Si2O7 groups, with the remaining large cavities occupied by Ca and REE ± Na. By analogy with the epidote supergroup, three groups are defined to accommodate the existing accepted mineral species: (i) the gatelite group – includes members that can be derived from the mineral gatelite-(Ce) solely by homovalent substitutions, i.e., gatelite-(Ce), perbøeite-(Ce), and ferriperbøeite-(Ce); (ii) the västmanlandite group – includes members typified by the mineral västmanlandite-(Ce). This group is derived from gatelite-(Ce) by homovalent substitutions and one coupled heterovalent substitution of the type M1[M3+] + O4[O2−] → M1[M2+] + O4[F]. Västmanlandite-(Ce) is the unique member of this potential group; and (iii) the alnaperbøeite group – includes members typified by the mineral alnaperbøeite-(Ce). This group is derived from gatelite-(Ce) by homovalent substitutions and one coupled heterovalent substitution of the type A2+A3+A4[A3+3] + M3[M2+] → A2+A3+A4[A3+2.5A+0.5] + M3[M3+]. Alnaperbøeite-(Ce) is the unique known member of this potential group. We recommend that the nomenclature of the gatelite supergroup be based on the criterion of occupancy of key cation sites. In particular, A1 and M3 (and, in principle, M2) determine the root name. If the dominant cations at A1, M3 (and M2) exactly match those of an approved species, the same fixed root name – modified by an appropriate prefix – is given. If the dominant cation is different at any of these sites, a new root name is assigned.

The members of the gatelite supergroup are rare minerals, although the number of occurrences is increasing. They have been found in REE-rich assemblages in a variety of geological settings, including granitic NYF pegmatites, carbonatite and associated fenites, alkali-syenites, and hydrothermal-metasomatic skarns. Most frequently, they coexist with törnebohmite-(Ce), allanite- or dollaseite-group minerals, bastnäsite-(Ce), cerite-(Ce), or fluorbritholite-(Ce). Analytical data available from the literature show extensive solid solution along the ferriperbøeite-(Ce)–västmanlandite-(Ce) and the perbøeite-(Ce)–alnaperbøeite-(Ce) joins, whereas there are few or no samples testifying to västmanlandite-(Ce)–gatelite-(Ce) or perbøeite-(Ce)–ferriperbøeite-(Ce) solid solutions. The present nomenclature recommendations were approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification.

Gatelite-(Ce) (Bonazzi et al., 2003), västmanlandite-(Ce) (Holtstam et al., 2005), perbøeite-(Ce) and alnaperbøeite-(Ce) (Bonazzi et al., 2014), as well as the recently approved species ferriperbøeite-(Ce) (Bindi et al., 2018) represent iso-topological epidote–törnebohmite (ET) type polysomes. They are distinguished by the chemical composition of the E module but share the same structural topology and the common general formula A4M4(Si2O7)(SiO4)3(O2−,F)(OH)2. From this point of view, they fulfil the criteria of forming a mineral supergroup (Mills et al., 2009). Because the first member of this kind was named gatelite-(Ce), the root name of this species has priority in naming the supergroup.

The object of this paper is to present nomenclature recommendations for the supergroup, approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification, and give a condensed review of what is currently known about the minerals belonging to it.

All minerals of the gatelite supergroup have a crystal structure that can be described as a regular alternation of modules of epidote-type structure (E) and modules of törnebohmite-type structure (T). The E modules are (001) slabs, ~10.4 Å thick, with the general composition A2M1M2M3[Si2O7][SiO4]X(OH), where X = O2− and/or F. The T-type modules are (−102) slabs, ~7.1 Å thick, with the composition [REE2Al(SiO4)2(OH)] (Fig. 1).

Fig. 1

Crystal structure of gatelite-group minerals seen as a regular alternation of (001) epidote-type slabs (E) and (−102) törnebohmite-type slabs (T). Unit cell corresponds to that of gatelite-(Ce) (P21/a).

Fig. 1

Crystal structure of gatelite-group minerals seen as a regular alternation of (001) epidote-type slabs (E) and (−102) törnebohmite-type slabs (T). Unit cell corresponds to that of gatelite-(Ce) (P21/a).

Specifically, the following crystallographic relations are observed: agat ~ 2aepi ~ [201]tör; bgat ~ bepi ~ btör; cgat ~ (cepi + atör). The doubling of the translation unit along the monoclinic a-axis in gatelite-(Ce) is due to a distortion away from the mirror symmetry normal to the b-axis; thus, the space group is P21/a instead of P21/m. Such symmetry deviations are indeed very slight, so that the hkl reflections with h = 2n + 1 are relatively weak (Bonazzi et al., 2003).

In the cases of perbøeite-(Ce), alnaperbøeite-(Ce) and ferriperbøeite-(Ce), no evidence of doubling of the translation unit along the a-axis was observed by means of X-ray diffraction, although the crystals were examined with long exposure times, whereas in västmanlandite-(Ce) only a weak, continuous streaking at a*/2 was recorded (Holtstam et al., 2005; Bonazzi et al., 2014; Bindi et al., 2018).

Thus, in all cases except for gatelite-(Ce), the structure was refined as an average structure in the space group P21/m instead of P21/a, disregarding the slight distortion away from the mirror plane normal to the b-axis. However, whereas the continuous streaking in västmanlandite-(Ce) is due to the offset from the (010) mirror plane of two sites (A3 and O15, occupied by REE and oxygen, respectively), in perbøeite-(Ce), alnaperbøeite-(Ce) and ferriperbøeite-(Ce), only O15 exhibits an offset from the mirror plane. Therefore, a possible streaking at a*/2 due to short-range order, if any, would be even weaker than in västmanlandite-(Ce).

All the minerals of the supergroup share the same topology, consisting of edge-sharing octahedral chains running along the monoclinic b-axis, cross-linked to each other by SiO4 and Si2O7 groups. The remaining large cavities are occupied by Ca (A1) and REE ± Na (A2, A3 and A4).

In the P21/a model there are four independent octahedral sites: M1 octahedra form branched chains with M3 octahedra alternately attached on opposite sides, whereas M2a and M2b octahedra (which in the P21/m model coalesce to a unique M2 octahedron with double multiplicity) form single chains. As the homologue octahedron of the epidote structure, M3 is the largest and distorted one, and hosts always divalent cations due to the ubiquitous presence of REE3+ at the A2 site. On the other hand, the dominance of divalent cations (mainly Mg) in the M1 octahedron is related to the amount of F- substituting for O2− at the O4 site. As in the epidote supergroup, the amount of Mg2+, Fe2+, Al3+, Fe3+ entering M1 and M3 depends on competing ions, with a preference for the larger cations to enter M3. M2a and M2b (or M2 in the P21/m model), which replicate the M2 in the epidote archetype and the octahedral site in törnebohmite, are almost fully occupied by Al.

The classification of the gatelite-type minerals is based on the E structural element, as the T module is relatively constant in composition, with only minor Al3+-Fe3+ substitution.

Up to now, only ET polysomes having the E module with A2 = REE have been found, probably because the high activity of lanthanides required to form törnebohmite: gatelite-(Ce), perbøeite-(Ce), and ferriperbøeite-(Ce) have E modules all belonging to the allanite group; västmanlandite-(Ce) has E = dollaseite-(Ce), and the E module of alnaperbøeite-(Ce) has no known natural analogue in the epidote supergroup (cf.Table 1). Dollaseite-(Ce), CaCeMg2Al(Si2O7)(SiO4)(OH)F, is distinct from the allanite-group members by the F-content at O4 and by having divalent ions, Mg2+, in both M1 and M3 (Peacor & Dunn, 1988), and forms its own group in the epidote supergroup together with khristovite-(Ce), CaCeMgAlMn2+(Si2O7)(SiO4)(OH)F (Armbruster et al., 2006).

Table 1

Data for accepted mineral species of the gatelite supergroup, along with selected examples of recommended names for hypothetical new members (in italics) and the corresponding E module. Key sites in bold type.

NameRef.End-member formulaS.G.E module Ref. (E module)
[A1 (3REE)] [M1 2M2 M3] Si2O7(SiO4)3X (OH)2
Gatelite group
gatelite-(Ce)(1)[CaCe3][Al Al2Mg]Si2O7(SiO4)3O(OH)2P21/adissakisite-(La), -(Ce)(2,3)
ferrigatelite-(Ce)[CaCe3][Fe3+Al2Mg]Si2O7(SiO4)3O(OH)2ferridissakisite-(Ce)*, $(4)
perbøeite-(Ce)(5)[CaCe3][Al Al2Fe2+]Si2O7(SiO4)3O(OH)2P21/mallanite-(La), -(Ce), -(Nd), -(Y)(6,7,8,9)
ferriperbøeite-(Ce)(10)[CaCe3][Fe3+Al2Fe2+]Si2O7(SiO4)3O(OH)2P21/mferriallanite-(La), -(Ce)(11, 12)
vanadoperbøeite-(Ce)[CaCe3][V3+Al2Fe2+]Si2O7(SiO4)3O(OH)2vanadoallanite-(La)(13)
new root name (A)[CaCe3][AlAl2Mn2+]Si2O7(SiO4)3O(OH)2akasakaite* 
ferriA[CaLa3][Fe3+Al2Mn2+]Si2O7(SiO4)3O(OH)2ferriakasakaite-(La)(14,15)
manganiA[CaLa3][Mn3+Al2Mn2+]Si2O7(SiO4)3O(OH)2manganiakasakaite-(La)(16)
new root name (B)[MnCe3][AlAl2Mn2+]Si2O7(SiO4)3O(OH)2androsite-(Ce)#(17)
ferriB[MnCe3][Fe3+Al2Mn2+]Si2O7(SiO4)3O(OH)2ferriandrosite-(La), -(Ce)#(14,17)
manganiB[MnCe3][Mn3+Al2Mn2+]Si2O7(SiO4)3O(OH)2manganiandrosite-(La), -(Ce)(18,19)
vanadoB[MnCe3][V3+Al2Mn2+]Si2O7(SiO4)3O(OH)2vanadoandrosite-(Ce)(19)
new root name (C)[MnCe3][AlAl2Fe2+]Si2O7(SiO4)3O(OH)2uedaite-(Ce)(20)
Västmanlandite potential group 
västmanlandite-(Ce)(21)[CaCe3][MgAl2Mg]Si2O7(SiO4)3F(OH)2P21/mdollaseite-(Ce)(22)
new root name (D)[CaCe3][MgAl2Mn](Si2O7)(SiO4)F(OH)2khristovite-(Ce) (23)
new root name (E)[CaCe3][MgAl2Fe2+]Si2O7(SiO4)3F(OH)2not yet found
ferroE[CaCe3][Fe2+Al2Fe2+]Si2O7(SiO4)3F(OH)2not yet found
Alnaperbøeite potential group
alnaperbøeite-(Ce)(5)[Ca(Ce2.5Na0.5)][AlAl2Al]Si2O7(SiO4)3O(OH)2P21/mnot yet found
new root name (F)[Ca(Ce2.5Na0.5][AlAl2Fe3+]Si2O7(SiO4)3O(OH)2not yet found
ferriF[CaCe2.5Na0.5][Fe3+Al2Fe3+]Si2O7(SiO4)3O(OH)2not yet found
NameRef.End-member formulaS.G.E module Ref. (E module)
[A1 (3REE)] [M1 2M2 M3] Si2O7(SiO4)3X (OH)2
Gatelite group
gatelite-(Ce)(1)[CaCe3][Al Al2Mg]Si2O7(SiO4)3O(OH)2P21/adissakisite-(La), -(Ce)(2,3)
ferrigatelite-(Ce)[CaCe3][Fe3+Al2Mg]Si2O7(SiO4)3O(OH)2ferridissakisite-(Ce)*, $(4)
perbøeite-(Ce)(5)[CaCe3][Al Al2Fe2+]Si2O7(SiO4)3O(OH)2P21/mallanite-(La), -(Ce), -(Nd), -(Y)(6,7,8,9)
ferriperbøeite-(Ce)(10)[CaCe3][Fe3+Al2Fe2+]Si2O7(SiO4)3O(OH)2P21/mferriallanite-(La), -(Ce)(11, 12)
vanadoperbøeite-(Ce)[CaCe3][V3+Al2Fe2+]Si2O7(SiO4)3O(OH)2vanadoallanite-(La)(13)
new root name (A)[CaCe3][AlAl2Mn2+]Si2O7(SiO4)3O(OH)2akasakaite* 
ferriA[CaLa3][Fe3+Al2Mn2+]Si2O7(SiO4)3O(OH)2ferriakasakaite-(La)(14,15)
manganiA[CaLa3][Mn3+Al2Mn2+]Si2O7(SiO4)3O(OH)2manganiakasakaite-(La)(16)
new root name (B)[MnCe3][AlAl2Mn2+]Si2O7(SiO4)3O(OH)2androsite-(Ce)#(17)
ferriB[MnCe3][Fe3+Al2Mn2+]Si2O7(SiO4)3O(OH)2ferriandrosite-(La), -(Ce)#(14,17)
manganiB[MnCe3][Mn3+Al2Mn2+]Si2O7(SiO4)3O(OH)2manganiandrosite-(La), -(Ce)(18,19)
vanadoB[MnCe3][V3+Al2Mn2+]Si2O7(SiO4)3O(OH)2vanadoandrosite-(Ce)(19)
new root name (C)[MnCe3][AlAl2Fe2+]Si2O7(SiO4)3O(OH)2uedaite-(Ce)(20)
Västmanlandite potential group 
västmanlandite-(Ce)(21)[CaCe3][MgAl2Mg]Si2O7(SiO4)3F(OH)2P21/mdollaseite-(Ce)(22)
new root name (D)[CaCe3][MgAl2Mn](Si2O7)(SiO4)F(OH)2khristovite-(Ce) (23)
new root name (E)[CaCe3][MgAl2Fe2+]Si2O7(SiO4)3F(OH)2not yet found
ferroE[CaCe3][Fe2+Al2Fe2+]Si2O7(SiO4)3F(OH)2not yet found
Alnaperbøeite potential group
alnaperbøeite-(Ce)(5)[Ca(Ce2.5Na0.5)][AlAl2Al]Si2O7(SiO4)3O(OH)2P21/mnot yet found
new root name (F)[Ca(Ce2.5Na0.5][AlAl2Fe3+]Si2O7(SiO4)3O(OH)2not yet found
ferriF[CaCe2.5Na0.5][Fe3+Al2Fe3+]Si2O7(SiO4)3O(OH)2not yet found
*

Recommended based on approved nomenclature criteria (Armbruster et al., 2006);

#

Probably valid, but still not IMA-approved;

$

Corresponding to UM-2007-36.

References: (1) = Bonazzi et al. (2003); (2) = Lavina et al. (2006); (3) = Grew et al. (1991); (4) = Holtstam & Andersson (2007); (5) = Bonazzi et al. (2014); (6) = Orlandi & Pasero (2006); (7) = Dollase (1971); (8) = Škoda et al. (2012); (9) = Armbruster et al. (2006); (10) = Bindi et al. (2018); (11) = Kolitsch et al. (2012); (12) = Kartashov et al. (2002); (13) = Nagashima et al. (2013); (14) = Nagashima et al. (2015); (15) = Chukanov et al. (2018); (16) = Biagioni et al. (2017); (17) = Girtler et al. (2013); (18) = Bonazzi et al. (1996); (19) = Cenki-Tok et al. (2006); (20) = Miyawaki et al. (2008); (21) = Holtstam et al. (2005); (22) = Peacor & Dunn (1988); (23) = Pautov et al. (1993).

By analogy with the epidote supergroup (Mills et al., 2009; cf.Armbruster et al., 2006), three groups are defined to accommodate the existing accepted mineral species with the gatelite supergroup established at the higher hierarchical level. Additional groups need to be introduced if new species cannot be covered by these.

  • The gatelite group includes members that can be derived from the mineral gatelite-(Ce) solely by homovalent substitutions. The key cation and anion sites for this group are: A1 = A2+; A2, A3, A4 = A3+; M1 = M3+; M2 = M3+; M3 = M2+; O4 = O2−; O10 and O11 = (OH). In other words, the dominant valence as listed above must be maintained. The three species gatelite-(Ce), perbøeite-(Ce), and ferriperbøeite-(Ce) thus constitute the presently known members of the gatelite group.

  • The västmanlandite group includes members typified by the mineral västmanlandite-(Ce). This group is derived from gatelite-(Ce) by homovalent substitutions and one coupled heterovalent substitution of the type M1[M3+] + O4[O2−] → M1[M2+] + O4[F-]. Thus, the valences on the key sites are: A1 = A2+; A2, A3, A4 = A3+; M1 = M2+; M2 = M3+; M3 = M2+; O4 = F-; O10 and O11 = (OH)-. Up to now, västmanlandite-(Ce) is the unique member of this potential group.

  • The alnaperbøeite group includes members typified by the mineral alnaperbøeite-(Ce). This group is derived from gatelite-(Ce) by homovalent substitutions and one coupled heterovalent substitution of the type A2+A3+A4[A3+3] + M3[M2+] → A2+A3+A4[A3+2.5A+0.5] + M3[M3+]. Alnaperbøeite-(Ce) is the unique known member of this potential group.

In line with the epidote minerals (Armbruster et al., 2006), we recommend that the nomenclature of the gatelite supergroup be based on the criterion of occupancy of key cation sites. In particular, A1 and M3 (and, in principle, M2) determine the root name. If the dominant cations at A1, M3 (and M2) exactly match those of an approved species, the same fixed root name is given. If the dominant cation is different at any of these sites, a new root name is to be assigned.

In the gatelite and alnaperbøeite groups, no prefix should be added to the root name if M1 = Al; in the västmanlandite group, no prefix is added to the root name if M1 = Mg. Otherwise a proper prefix derived from the name of a chemical element is attached. In particular, when M1 = M3+ (gatelite and alnaperbøeite groups), the prefixes “ferri”, “mangani”, “chromo”, and “vanado” indicate dominant Fe3+, Mn3+, Cr3+, and V3+ at M1, respectively. When M1 = M2+ (västmanlandite group), the prefix “ferro” indicates dominant Fe2+ at M1. Finally, the dominant REE (at A2 + A3 + A4) is indicated with a Levinson suffix (Levinson, 1966; Bayliss & Levinson, 1988).

Some suggested names for hypothetical new members are listed in Table 1 along with the known IMA-approved species. Figure 2 shows the relations between the groups in the gatelite supergroup. Figure 3 shows the chemical relations between known and some potential new species in the gatelite supergroup.

Fig. 2

Diagram distinguishing groups in the gatelite supergroup, based on M1 + M3 contents. Västmanlandite and alnaperbøeite are potential groups because both include only a single member, and thus are written in italics.

Fig. 2

Diagram distinguishing groups in the gatelite supergroup, based on M1 + M3 contents. Västmanlandite and alnaperbøeite are potential groups because both include only a single member, and thus are written in italics.

Fig. 3

Schematic representation of chemical relations in the gatelite supergroup based on M1 + M3 contents (see subtitutional vectors). Stick colours are the same as for the compositional areas of Fig. 2.

Fig. 3

Schematic representation of chemical relations in the gatelite supergroup based on M1 + M3 contents (see subtitutional vectors). Stick colours are the same as for the compositional areas of Fig. 2.

Gatelite-supergroup minerals have been found in a variety of geological settings: granitic niobium-yttrium-fluorine family (NYF) pegmatite (Tysfjord), carbonatite and associated fenites (Biraya, Ren, Anadol), alkali-syenite (Mochalin Log placer deposit), hydrothermal-metasomatic skarns (Trimouns, Bastnäs, Norberg), with an age span of nearly two billion years (see Table 2 for references). Obviously, they exist in REE-rich assemblages, and most frequently coexist with törnebohmite-(Ce), allanite- or dollaseite-group minerals, bastnäsite-(Ce), cerite-(Ce), or fluorbritholite-(Ce). Among the more abundant associated non-REE minerals are dolomite, fluorite or quartz.

Table 2

Reported occurrences of gatelite supergroup minerals.

MineralLocalityAssociationAgeRef.
Gatelite-(Ce)Trimouns talc mine, Luzenac, Ariège, France (type locality)aeschynite-(Y), törnebohmite-(Ce), dissakisite-(Ce), dolomite, talc, quartz, pyrite100 Ma(a)
Västmanlandite-(Ce)Norberg Fe mines, Västmanland, Sweden• Malmkärra (type locality)• Johannagruvan• Hackspikgruvanfluorbritholite-(Ce), dollaseite-(Ce), gadolinite-(Y), gadolinite-(Nd), ulfanderssonite-(Ce), tremolite, magnetite, dolomite1.9–1.8 Ga(b, c, d)
Perbøeite-(Ce)Tysfjord granite pegmatites, Nordland, Norway• Stetind• Hundholmen (type locality)• Nedre Eivollentörnebohmite-(Ce), allanite-(Ce), bastnäsite-(Ce), fluorthalenite-(Y), kuliokite-(Y), hundholmenite-(Y), fluorbritholite-(Y), fluorite400 Ma(e, f)
Alnaperbøeite-(Ce)Tysfjord granite pegmatites, Nordland, Norway• Stetind (type locality)• Hundholmen• Nedre Eivollentörnebohmite-(Ce), allanite-(Ce), bastnäsite-(Ce), fluorthalenite-(Y), kuliokite-(Y), hundholmenite-(Y), fluorbritholite-(Y), fluorite400 Ma(e, f)
Ferriperbøeite-(Ce)Bastnäs Fe–Cu–REE mines, Riddarhyttan, Västmanland, Sweden (type locality)cerite-(Ce), törnebohmite-(Ce), ferriallanite-(Ce), bastnäsite-(Ce), tremolite + sulfide minerals1.9–1.8 Ga(g, c, d)
Ferriperbøeite-(Ce) Rödbergsgruvan Fe mine, Nora, Örebro, Swedencerite-(Ce), ferriallanite-(Ce), bastnäsite-(Ce), tremolite, zircon1.9–1.8 Ga(c)
Ferriperbøeite-(Ce)Biraya REE-Fe ore occurrence, Vitim highland, Irkutskaya Oblast’, Russiatörnebohmite-(Ce), ferriallanite-(Ce), biraite-(Ce), strontianite, calcite500–400 Ma(h, i)
Ferriperbøeite-(Ce)Ren Carbonatite Sill, Monashee Mountains, British Columbia, Canada biraite-(Ce) + Mg-analogue to biraite-(Ce), ferriallanite-(Ce), monazite-(Ce), winchite, dolomite, calcite, barite700 Ma(l)
Perbøeite-(Ce) (originally reported as gatelite-(Ce))Anadol REE occurrence, Donetskaya Oblast’, East Azov region, Ukraineallanite-(Ce), törnebohmite-(Ce), britholite-(Ce), cerite-(Ce), quartz, epidote, fluorite, goethite1.9–1.7 Ga?(m)
Ferriperbøeite-(Ce)Högfors Fe mines, Riddarhyttan, Västmanland, Swedencerite-(Ce), bastnäsite-(Ce), gadolinite-(Ce), ferriallanite-(Ce), monazite-(Ce), quartz, hematite1.9–1.8 Ga(n)
Ferriperbøeite-(Ce)/“ferriperbøeite-(La)” Mochalin Log, Potanin Mountains, southern Urals, Chelyabinsk Oblast’, Russiabastnäsite-(La), törnebohmite-(Ce), allanite-(Ce), dissakisite-(La), monazite-(La), quartz, thorite400 Ma(o, p)
MineralLocalityAssociationAgeRef.
Gatelite-(Ce)Trimouns talc mine, Luzenac, Ariège, France (type locality)aeschynite-(Y), törnebohmite-(Ce), dissakisite-(Ce), dolomite, talc, quartz, pyrite100 Ma(a)
Västmanlandite-(Ce)Norberg Fe mines, Västmanland, Sweden• Malmkärra (type locality)• Johannagruvan• Hackspikgruvanfluorbritholite-(Ce), dollaseite-(Ce), gadolinite-(Y), gadolinite-(Nd), ulfanderssonite-(Ce), tremolite, magnetite, dolomite1.9–1.8 Ga(b, c, d)
Perbøeite-(Ce)Tysfjord granite pegmatites, Nordland, Norway• Stetind• Hundholmen (type locality)• Nedre Eivollentörnebohmite-(Ce), allanite-(Ce), bastnäsite-(Ce), fluorthalenite-(Y), kuliokite-(Y), hundholmenite-(Y), fluorbritholite-(Y), fluorite400 Ma(e, f)
Alnaperbøeite-(Ce)Tysfjord granite pegmatites, Nordland, Norway• Stetind (type locality)• Hundholmen• Nedre Eivollentörnebohmite-(Ce), allanite-(Ce), bastnäsite-(Ce), fluorthalenite-(Y), kuliokite-(Y), hundholmenite-(Y), fluorbritholite-(Y), fluorite400 Ma(e, f)
Ferriperbøeite-(Ce)Bastnäs Fe–Cu–REE mines, Riddarhyttan, Västmanland, Sweden (type locality)cerite-(Ce), törnebohmite-(Ce), ferriallanite-(Ce), bastnäsite-(Ce), tremolite + sulfide minerals1.9–1.8 Ga(g, c, d)
Ferriperbøeite-(Ce) Rödbergsgruvan Fe mine, Nora, Örebro, Swedencerite-(Ce), ferriallanite-(Ce), bastnäsite-(Ce), tremolite, zircon1.9–1.8 Ga(c)
Ferriperbøeite-(Ce)Biraya REE-Fe ore occurrence, Vitim highland, Irkutskaya Oblast’, Russiatörnebohmite-(Ce), ferriallanite-(Ce), biraite-(Ce), strontianite, calcite500–400 Ma(h, i)
Ferriperbøeite-(Ce)Ren Carbonatite Sill, Monashee Mountains, British Columbia, Canada biraite-(Ce) + Mg-analogue to biraite-(Ce), ferriallanite-(Ce), monazite-(Ce), winchite, dolomite, calcite, barite700 Ma(l)
Perbøeite-(Ce) (originally reported as gatelite-(Ce))Anadol REE occurrence, Donetskaya Oblast’, East Azov region, Ukraineallanite-(Ce), törnebohmite-(Ce), britholite-(Ce), cerite-(Ce), quartz, epidote, fluorite, goethite1.9–1.7 Ga?(m)
Ferriperbøeite-(Ce)Högfors Fe mines, Riddarhyttan, Västmanland, Swedencerite-(Ce), bastnäsite-(Ce), gadolinite-(Ce), ferriallanite-(Ce), monazite-(Ce), quartz, hematite1.9–1.8 Ga(n)
Ferriperbøeite-(Ce)/“ferriperbøeite-(La)” Mochalin Log, Potanin Mountains, southern Urals, Chelyabinsk Oblast’, Russiabastnäsite-(La), törnebohmite-(Ce), allanite-(Ce), dissakisite-(La), monazite-(La), quartz, thorite400 Ma(o, p)

References: (a) = Bonazzi et al. (2003); (b) = Holtstam et al. (2005); (c) = Holtstam & Andersson (2007); (d) = Holtstam et al. (2014); (e) = Bonazzi et al. (2014); (f) = Aaroe (2017); (g) = Bindi et al. (2018); (h) = Gurzhiy et al. (2010); (i) = P.M. Kartashov, pers. comm.; (l) = Ya’acoby (2011); (m) = Khomenko et al. (2013); (n) = Jonsson & Högdahl (2013); (o) = webmineral.ru; (p) = R. Škoda, pers. comm.

The members of the supergroup are very rare minerals, although the number of observations is increasing (Table 2). On the one hand, it is important to bear in mind that some species are easily overlooked without careful mineralogical and petrological studies; for example, ferriallanite-(Ce) and ferriperbøeite-(Ce) have similar appearance (habit, colour and lustre). Furthermore, minute intergrowths of E with ET or ET with T members have been observed (Fig. 4) so that even microchemical point analyses sometimes are inadequate for identification. On the other hand, gatelite-supergroup minerals are not ubiquitous in all REE mineral assemblages of a similar kind, as some recent detailed studies suggest (e.g., Allaz et al., 2015).

Fig. 4

SEM-BSE images showing minute lamellae of törnebohmite-(Ce) (light grey, black arrow) intergrown with lamellae of a member of the perbøeite-(Ce)–alnaperbøeite-(Ce) solid solution (dark grey, red arrow) in the samples from Stetind (Tysfjord, Norway). Intermediate grey lamellae likely correspond to intergrowths of thinner lamellae. The image at the top shows the mineral association (hu = hundholmenite-(Y); tö = törnebohmite-(Ce); fl = Y-rich fluorite).

Fig. 4

SEM-BSE images showing minute lamellae of törnebohmite-(Ce) (light grey, black arrow) intergrown with lamellae of a member of the perbøeite-(Ce)–alnaperbøeite-(Ce) solid solution (dark grey, red arrow) in the samples from Stetind (Tysfjord, Norway). Intermediate grey lamellae likely correspond to intergrowths of thinner lamellae. The image at the top shows the mineral association (hu = hundholmenite-(Y); tö = törnebohmite-(Ce); fl = Y-rich fluorite).

To the best of our knowledge, no experimental work has been undertaken to study the PT–x stability of these minerals. Nevertheless, some analogies with the REE-rich epidote-supergroup minerals might be inferred. Allanite-(Ce) is stable up to ca. 800 °C at 1 kbar and to ≥1050 °C at 40 kbar (Affholter, 1987; Hermann, 2002). However, the greater amount of (OH) groups in the gatelite-type structure possibly decreases the T stability in comparison with the allanite-group minerals, although there are indications that törnebohmite-(Ce) may persist to at least 800 °C (Affholter, 1987; Martin et al., 2011). Studies of relevant REE-rich members of the epidote supergroup indicate that their P–T stability is highly dependent on bulk-rock and fluid chemistry (e.g., Janots et al., 2007; Budzyń et al., 2017), in particular Ca and P contents. Members of the gatelite supergroup obviously need high bulk concentrations of LREE and Al for their formation, but appear to be relatively insensitive to SiO2 activity and fO2. From the data provided for the different natural occurrences, it appears that they have been formed as primary mineral at least in a range from 350 °C (Trimouns; Schärer et al., 1999) to 750 °C (Ren; Ya’acoby, 2011). In some rocks, members of the supergroup have apparently survived regional metamorphism of up to ca. 600 °C/3 kbar (Bastnäs; Skelton et al., 2018) and 700 °C/5–8 kbar (Ren; Ya’acoby, 2011).

In some cases, the minerals seem to have formed at the earliest stage of REE-mineralization, more or less directly in a magmatic or hydrothermal system. In the Bastnäs-type deposits in Sweden, ferriperbøeite-(Ce) and västmanlandite-(Ce) formed at the expense of primary cerite-(Ce) or fluorbritholite-(Ce), respectively, in metasomatic reactions involving Ca–Mg minerals (dolomite, tremolite) and hydrothermal fluids (T > 400 °C) containing Si-, Fe- and Al–chloro-fluoro anion complexes (Holtstam & Andersson, 2007; Holtstam et al., 2014). In the Anadol deposit, perbøeite-(Ce) and associated törnebohmite-(Ce) are interpreted to have been formed by decomposition of allanite-(Ce), by reaction with high fO2, low-T aqueous fluids, also producing REE-bearing epidote, quartz and iron hydroxide (Khomenko et al., 2013).

The supergroup, as it is presently known, can be described by the multicomponent system Ce2O3–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–H2O (CeCMF2ASH), with addition of F2 or Na2O to cover the exotic members västmanlandite-(Ce) or alnaperbøeite-(Ce) (Fig. 3). Analytical data available from literature sources are collected in a supplementary table (Table S1). As no vacancies at the cation positions have been demonstrated for the structure type, formulae are normalized to 13 cations. All analysed samples deviate more or less from the ideal composition, with mainly M3[MgFe-12+], M3[AlFe-12+], M1[MgFe-13+], M1,M2[AlFe-13+], M1,M3[MgAl−1], A[Ca(REE)−1], A[(REE)Na−1] and O4[OF−1] as substitution vectors. The specimens closest to end-member composition contain 84% västmanlandite (from Norberg), 80% perbøeite (type specimen), 70% ferriperbøeite (Bastnäs), 56% alnaperbøeite (type specimen), and 51% gatelite (type specimen) component, respectively. The effect of the OF−1 substitution is clear, largely related to the västmanlandite component, but the (OH)F−1 substitution operating at the OH sites in this structure type cannot be excluded a priori. Variation at the tetrahedral sites is insignificant; the average Si content for the whole sample population is 4.97 ± 0.07 atoms per formula unit (apfu). Aluminium in M2, assuming perfect ordering at the smaller M2 octahedra, ranges from 1.67 to 2.00 apfu; structure refinements and Mössbauer spectroscopy data support the presence of minor Fe3+ at this site for västmanlandite-(Ce) and ferriperbøeite-(Ce) (Holtstam et al. 2005; Bindi et al., 2018).

The major chemical substitutions occur at the octahedral M1 and M3 sites. The greatest variation concerns Mg2+, which ranges from 0 to 1.75 apfu. The Mg content is inversely correlated with Fe2+, indicating an extensive ferriperbøeite-(Ce)–västmanlandite-(Ce) solid solution (Fig. 5). The Rödbergsgruvan sample (Table S1) is a case with near-midpoint composition, with ~57% ferriperbøeite and 43% västmanlandite. A single analysis from the Norberg mines is also special as it shows Fe2+ > Mg and still contains an appreciable amount of F (0.31 apfu), corresponding to a substantial fraction of unnamed [CaCe3][MgAl2Fe2+]Si2O7(SiO4)3F(OH)2 (root name “E”). Variation in Fe3+ at the M1–M3 sites is extensive (0–1.03 Fe apfu). It is noteworthy that there are no compositional points where 2 < Al apfu < 3 (Fig. 5), which means that intermediate members of the ferriperbøeite-(Ce)–perbøeite-(Ce) solid solution have not yet been found, although the corresponding epidote-supergroup minerals (i.e., members of the ferriallanite–allanite solid solution) are widely reported (Gieré & Sorensen, 2004; Vlach, 2012). There is also a limited Al–Mg substitution, similar to what occurs in the intermediate dollaseite–dissakisite compositions found in the Norberg deposits (Holtstam & Andersson, 2007). Replacement of Fe2+ for Al is limited to the perbøeite-(Ce)–alnaperbøeite-(Ce) join, where there is also a significant coupled Ce–Na substitution (Bonazzi et al., 2014). As shown in Fig. 5, along this join Al approaches the theoretical value of 4 apfu. However, the corresponding Na content does not reach 0.5 apfu, since the substitution of trivalent REEs by divalent Ca also contributes to charge balance.

Fig. 5

Variation of Al3+vs. Mg2+ (in atoms per formula unit) in gatelite-supergroup minerals. Empty circles with numbers represent ideal compositions: 1 = gatelite-(Ce); 2 = västmanlandite-(Ce); 3 = ferriperbøeite-(Ce); 4 = perbøeite-(Ce); 5 = alnaperbøeite-(Ce). Orange triangles (TY) refer to members of perbøeite-(Ce)–alnaperbøeite-(Ce) join from Tysfiord granite, Norway (Stetind + Hundholmen + Nedre Eivollen) (Table 7, Bonazzi et al., 2014); the other symbols refer to chemical data reported in Table S1 as follows: B = Bastnäs, Västmanland, Sweden; N = Norberg (Malmkärra + Johanna + Hackspik) mines, Västmanland, Sweden; R = Ren, British Columbia, Canada; RÖ = Rödbergsgruvan mine, Nora, Örebro, Sweden; T = Trimouns mine, Luzenac, France; A = Anadol, East Azov region, Ukraine.

Fig. 5

Variation of Al3+vs. Mg2+ (in atoms per formula unit) in gatelite-supergroup minerals. Empty circles with numbers represent ideal compositions: 1 = gatelite-(Ce); 2 = västmanlandite-(Ce); 3 = ferriperbøeite-(Ce); 4 = perbøeite-(Ce); 5 = alnaperbøeite-(Ce). Orange triangles (TY) refer to members of perbøeite-(Ce)–alnaperbøeite-(Ce) join from Tysfiord granite, Norway (Stetind + Hundholmen + Nedre Eivollen) (Table 7, Bonazzi et al., 2014); the other symbols refer to chemical data reported in Table S1 as follows: B = Bastnäs, Västmanland, Sweden; N = Norberg (Malmkärra + Johanna + Hackspik) mines, Västmanland, Sweden; R = Ren, British Columbia, Canada; RÖ = Rödbergsgruvan mine, Nora, Örebro, Sweden; T = Trimouns mine, Luzenac, France; A = Anadol, East Azov region, Ukraine.

All samples representing the ferriperbøeite-(Ce)–västmanlandite-(Ce) join show a deficit of Ca (0.80–0.97 apfu), whereas the Al-rich members seem to have Ca ≥ 1.00 apfu, which has been ascribed to an artefact related to difficulties with analysing all REE (Bonazzi et al., 2014). From structure refinements, it is shown that when extra REE atoms occur, they are accommodated at the A1 site in the E module (Holtstam et al., 2005; Bindi et al., 2018). Cerium is here consistently the dominant REE (atomic Ce/La = 2.71–1.05); the material from Ren is the richest in La2O3 (>20 wt%). The true La-analogue of ferriperbøeite-(Ce) has, however, recently been discovered at Mochalin Log (R. Škoda, pers. comm. 2017). Overall, there is also a significant variation in Nd2O3 and Sm2O3 contents (2.5–11.7 and 0.1–2.0 wt%, respectively). At Trimouns and Tysfjord we find Ce > Nd > La. The Tysfjord samples also have, along with a västmanlandite-(Ce) sample from Norberg (Malmkärra), the highest Y2O3 concentrations (0.6–1.3 wt%). The HREE (Tb–Lu) contents are, when actually measured, generally very low, with a maximum of 0.3 wt% of Er2O3 (Tysfjord).

It is noteworthy that no gatelite-supergroup minerals have been found to show substantial MnO contents (up to ca. 1 wt% for samples from Anadol, ca. 0.3 wt% from Trimouns, and ca. 0.2 wt% from Tysfjord), although Mn in both trivalent and divalent states is a major constituent for many members of the allanite group (see Table 1).

Impurities in these minerals are generally low, with 0.3 wt% P2O5 (Ren), 0.2 wt% TiO2 (Ren). Actinides are mostly close to or below the electron microprobe detection limits, with the Tysfjord pegmatite samples as an exception (contains 0.1–0.4 wt% ThO2). The presence of minor amounts of large cations such as Ba2+ and Pb2+, are also indicated in the EDS analyses from Anadol. The cations Th4+, Pb2+ and Ba2+ are preferably assigned to the A2–4 sites, as they occur in the epidote supergroup (Armbruster et al., 2006).

PB and LB thank the University of Florence, “Progetto di Ateneo 2015”. DH acknowledges a previous grant to study the Bastnäs-type deposits from the Swedish Research Council (contract #2003-3572). Ulf B. Andersson kindly commented on an early draft of the manuscript. The paper benefitted of improvements by two anonymous reviewers.

1.
Aaroe
,
G.
(
2017
):
Age and Tectonic significance of Niobium-Yttrium-Fluorine (NYF)-Pegmatites in the Tysfjord Region, Nordland, Norway
.
M.Sc. thesis
 ,
Texas Tech University
,
99
p.
2.
Affholter
,
K.A.
(
1987
):
Synthesis and crystal chemistry of lanthanide allanites
.
Ph.D. Thesis
 ,
Virginia Tech
,
203
p.
3.
Allaz
,
J.
,
Raschke
,
M.B.
,
Persson
,
P.M.
,
Stern
,
C.R.
(
2015
):
Age, petrochemistry, and origin of a REE-rich mineralization in the Longs Peak–St. Vrain batholith, near Jamestown, Colorado (U.S.A.)
.
Am. Mineral.
 ,
100
,
2123
2140
.
4.
Armbruster
,
T.
,
Bonazzi
,
P.
,
Akasaka
,
M.
,
Bermanec
,
V.
,
Chopin
,
C.
,
Gieré
,
R.
,
Heuss-Assbichler
,
S.
,
Liebscher
,
A.
,
Menchetti
,
S.
,
Pan
,
Y.
,
Pasero
,
M.
(
2006
):
Recommended nomenclature of epidote-group minerals
.
Eur. J. Mineral.
 ,
18
,
551
567
.
5.
Bayliss
,
P.
&
Levinson
,
A.A.
(
1988
):
A system of nomenclature for rare-earth mineral species: revision and extension
.
Am. Mineral.
 ,
73
,
422
423
.
6.
Biagioni
,
C.
,
Ciriotti
,
M.
,
Bracco
,
R.
,
Pasero
,
M.
,
Zaccarini
,
F.
(
2017
):
Manganiakasakaite-(La), IMA 2017–028. CNMNC Newsletter No. 38, August 2017, page 779
.
Eur. J. Mineral.
 ,
29
,
777
781
.
7.
Bindi
,
L.
,
Holtstam
,
D.
,
Fantappié
,
G.
,
Andersson
,
U.B.
,
Bonazzi
,
P.
(
2018
):
Ferriperbøeite-(Ce), [CaCe3]∑=4[Fe3+Al2Fe2+]∑=4[Si2O7][SiO4]3O(OH)2, a new member of the polysomatic epidote–törnebohmite series from the Nya Bastnäs Fe-Cu-REE deposit Sweden
.
Eur. J. Mineral.
 ,
30
,
537
544
.
8.
Bonazzi
,
P.
,
Menchetti
,
S.
,
Reinecke
,
T.
(
1996
):
Solid solution between piemontite and androsite-(La), a new mineral of the epidote group from Andros Island, Greece
.
Am. Mineral.
 ,
81
,
735
742
.
9.
Bonazzi
,
P.
,
Bindi
,
L.
,
Parodi
,
G.
(
2003
)
Gatelite-(Ce), a new REE-bearing mineral from Trimouns, French Pyrenees: crystal structure and polysomatic relationships with epidote and törnebohmite-(Ce)
.
Am. Mineral.
 ,
88
,
223
228
.
10.
Bonazzi
,
P.
,
Lepore
,
G.O.
,
Bindi
,
L.
,
Chopin
,
C.
,
Husdal
,
T.
,
Medenbach
,
O.
(
2014
):
Perbøeite-(Ce) and alnaperbøeite-(Ce), two new members of the epidote–törnebohmite polysomatic series: Chemistry, structure, dehydrogenation, and clue for a sodian epidote end-member
.
Am. Mineral.
 ,
99
,
157
169
.
11.
Budzyń
,
B.
,
Harlov
,
D.
,
Kozub-Budzyń
,
G.
,
Majka
,
J.
(
2017
):
Experimental constraints on the relative stabilities of the two systems monazite-(Ce) – allanite-(Ce) – fluorapatite and xenotime-(Y) – (Y,HREE)-rich epidote – (Y,HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200–1000 MPa and 450–750 °C
.
Mineral. Petrol.
 ,
111
,
183
217
.
12.
Cenki-Tok
,
B.
,
Ragu
,
A.
,
Armbruster
,
T.
,
Chopin
,
C.
,
Medenbach
,
O.
(
2006
):
New Mn- and rare-earth-rich epidote-group minerals in metacherts: manganiandrosite-(Ce) and vanadoandrosite-(Ce)
.
Eur. J. Mineral.
 ,
18
,
569
582
.
13.
Chukanov
,
N.V.
,
Zubkova
,
N.V.
,
Schäfer
,
C.
,
Varlamov
,
D.A.
,
Ermolaeva
,
V.N.
,
Polekhovsky
,
Y.S.
,
Jančev
,
S
,
Pekov
,
I.V.
,
Pushcharovsky
,
D.Yu.
(
2018
):
New data on ferriakasakaite-(La) and related minerals extending the compositional field of the epidote supergroup
.
Eur. J. Mineral.
 ,
30
,
323
332
.
14.
Dollase
,
W.A.
(
1971
):
Refinement of the crystal structures of epidote, allanite and hancockite
.
Am. Mineral.
 ,
56
,
447
464
.
15.
Gieré
,
R.
&
Sorensen
,
S.S.
(
2004
):
Allanite and other REE-rich epidote-group minerals
. in
Epidotes
 ”,
Reviews in Mineralogy and Geochemistry
,
56
,
Mineralogical Society of America
,
Washington
,
431
493
.
16.
Girtler
,
D.
,
Tropper
,
P.
,
Hauzenberger
,
C.
(
2013
):
Androsite-(Ce) and ferriandrosite-(Ce) as indicator for low-grade REE mobility in the Veitsch Mn Deposit (Styria)
.
Mitt. Öster. Mineral. Ges.
 ,
159
,
56
.
17.
Grew
,
E.S.
,
Essene
,
E.J.
,
Peacor
,
D.R.
,
Su
,
S.C.
,
Asami
,
M.
(
1991
):
Dissakisite-(Ce), a new member of the epidote group and the Mg analogue of allanite-(Ce), from Antarctica
.
Am. Mineral.
 ,
76
,
1990
1997
.
18.
Gurzhiy
,
V.V.
,
Karimova
,
O.V.
,
Kartashov
,
P.M.
,
Krivovichev
,
S.V.
(
2010
):
Crystal structure of a new member of the polysomatic series törnebohmite-epidote from carbonatites of Eastern Siberia
.
International Mineralogical Association Meeting Budapest
,
August 2010
,
Abstract Volume
,
744
p.
19.
Hermann
,
J.
(
2002
):
Allanite: thorium and light rare earth element carrier in subducted crust
.
Chem. Geol.
 ,
192
,
289
306
.
20.
Holtstam
,
D.
&
Andersson
,
U.B.
(
2007
):
The REE minerals of the Bastnäs-type deposits, South-Central Sweden
.
Can. Mineral.
 ,
45
,
1073
1114
.
21.
Holtstam
,
D.
,
Kolitsch
,
U.
,
Andersson
,
U.B.
(
2005
):
Västmanlandite-(Ce) – a new lanthanide- and F-bearing sorosilicate mineral from Västmanland, Sweden: description, crystal structure, and relation to gatelite-(Ce)
.
Eur. J. Mineral.
 ,
17
,
129
141
.
22.
Holtstam
,
D.
,
Andersson
,
U.B.
,
Broman
,
C.
,
Mansfeld
,
J.
(
2014
):
Origin of REE mineralization in the Bastnäs-type Fe-REE-(Cu-Mo-Bi-Au) deposits, Bergslagen, Sweden
.
Mineral. Deposita
 ,
49
,
933
966
.
23.
Janots
,
E.
,
Brunet
,
F.
,
Goffé
,
B.
,
Poinssot
,
C.
,
Burchard
,
M.
,
Cemic
,
L.
(
2007
):
Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites
.
Contrib. Mineral. Petrol.
 ,
154
,
1
14
.
24.
Jonsson
,
E.
&
Högdahl
,
K.
(
2013
):
New evidence for the timing of formation of Bastnäs-type REE mineralisation in Bergslagen
.
Proceedings of the 12th SGA Biennial Meeting
 ,
4
,
1724
1727
.
25.
Kartashov
,
P.
,
Ferraris
,
G.
,
Ivaldi
,
G.
,
Sokolova
,
E.
,
McCammon
,
C.A.
(
2002
):
Ferriallanite-(Ce), CaCeFe3+AlFe2+(SiO4)(Si2O7)O(OH), a new member of the epidote group: description, X-ray and Mössbauer study
.
Can. Mineral.
 ,
40
,
1641
1648
.
26.
Khomenko
,
V.M.
,
Vyshnevskyy
,
O.A.
,
Strekozov
,
S.N.
(
2013
):
Törnebohmite and gatelite of Anadol ore occurrence in the Azov Area: the first finding in Ukraine
.
Mineral. J.
 ,
35
,
32
43
(In Russian)
.
27.
Kolitsch
,
U.
,
Mills
,
S.J.
,
Miyawaki
,
R.
,
Blass
,
G.
(
2012
):
Ferriallanite-(La), a new member of the epidote supergroup from the Eifel Germany
.
Eur. J. Mineral.
 ,
24
,
741
747
.
28.
Lavina
,
B.
,
Carbonin
,
S.
,
Russo
,
U.
,
Tumiati
,
S.
(
2006
):
The crystal structure of dissakisite-(La), a new member of the epidote group, and its structural variations after annealing of radiation damage
.
Am. Mineral.
 ,
91
,
104
110
.
29.
Levinson
,
A.A.
(
1966
):
A system of nomenclature for rare-earth minerals
.
Am. Mineral.
 ,
51
,
152
158
.
30.
Martin
,
C.
,
Brunet
,
F.
,
Duchêne
,
S.
,
Luais
,
B.
,
Deloule
,
E.
(
2011
):
REE and Hf distribution between pyrope and NaCl-bearing water at eclogitic-facies conditions
.
Eur. J. Mineral.
 ,
23
,
343
353
.
31.
Mills
,
S.J.
,
Hatert
,
F.
,
Nickel
,
E.H.
,
Ferraris
,
G.
(
2009
):
The standardisation of mineral group hierarchies: application to recent nomenclature proposals
.
Eur. J. Mineral.
 ,
21
,
1073
1080
.
32.
Miyawaki
,
R.
,
Yokoyama
,
K.
,
Matsubara
,
S.
,
Tsutsumi
,
Y.
,
Goto
,
A.
(
2008
):
Uedaite-(Ce), a new member of the epidote group with Mn at the A site, from Shodoshima, Kagawa Prefecture, Japan
.
Eur. J. Mineral.
 ,
20
,
261
269
.
33.
Nagashima
,
M.
,
Nishio-Hamane
,
D.
,
Tomita
,
N.
,
Minakawa
,
T.
,
Inaba
,
S.
(
2013
):
Vanadoallanite-(La): a new epidote-supergroup mineral from Ise, Mie Prefecture, Japan
.
Mineral. Mag.
 ,
77
,
2739
2752
.
34.
Nagashima
,
M.
,
Nishio-Hamane
,
D.
,
Tomita
,
N.
,
Minakawa
,
T.
,
Inaba
,
S.
(
2015
):
Ferriakasakaite-(La) and ferriandrosite-(La): new epidote-supergroup minerals from Ise, Mie Prefecture, Japan
.
Mineral. Mag.
 ,
79
,
735
753
.
35.
Orlandi
,
P.
&
Pasero
,
M.
(
2006
):
Allanite-(La) from Buca della Vena mine, Apuan Alps, Italy, an epidote-group mineral
.
Can. Mineral.
 ,
44
,
63
68
.
36.
Pautov
,
L.A.
,
Khorov
,
P.V.
,
Ignatenko
,
K.I.
,
Sokolova
,
E.V.
,
Nadezhina
,
T.N.
(
1993
):
Khristovite-(Ce), (Ca, REE)REE(Mg, Fe)AlMnSi3O11(OH)(F, O), a new mineral of the epidote group
.
Zap. Vser. Mineral. Obsh.
 ,
122
,
103
111
.
37.
Peacor
,
D.R.
&
Dunn
,
P.J.
(
1988
):
Dollaseite-(Ce) (magnesium orthite redefined): structure refinement and implications for F + M2+ substitutions in epidote-group minerals
.
Am. Mineral.
 ,
73
,
838
842
.
38.
Schärer
,
U.
,
de Parseval
,
Ph.
,
Polvéde
,
M.
,
Saint Blanquat
,
M.
(
1999
):
Formation of the Trimouns talc-chlorite deposit (Pyrenees) from persistent hydrothermal activity between 112 and 97 Ma
.
Terra Nova
 ,
11
,
30
37
.
39.
Skelton
,
A.
,
Mansfeld
,
J.
,
Ahlin
,
S.
,
Lundqvist
,
T.
,
Linde
,
J.
,
Nilsson
,
J.
(
2018
):
A compilation of metamorphic pressure–temperature estimates from the Svecofennian province of eastern and central Sweden
.
GFF
 ,
140
,
1
10
.
40.
Škoda
,
R.
,
Cempírek
,
J.
,
Filip
,
J.
,
Novák
,
M.
,
Veselovsky
,
F.
,
Čtvrtlík
,
R.
(
2012
):
Allanite-(Nd), CaNdAl2Fe2+(SiO4)(Si2O7)O(OH), a new mineral from Åskagen Sweden.
.
Am. Mineral.
 ,
97
,
983
988
.
41.
Vlach
,
S.R.F.
(
2012
):
Micro-structural and compositional variations of hydrothermal epidote-group minerals from a peralkaline granite, Corupà Pluton, Graciosa Province, South Brazil, and their petrological implications
.
Ann. Brazilian Acad. Sci.
 ,
84
,
407
425
.
42.
Ya’acoby
,
A.
(
2011
):
The petrology and petrogenesis of the Ren carbonatite sill and fenites, southeastern British Columbia, Canada
,
M.Sc. thesis
 ,
University of British Columbia
,
463
p.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC-BY-NC, which permits unrestricted use, distribution, and reproduction in any medium, except for commercial purposes, provided the original work is properly cited.

Supplementary data