The compressibility of high-pressure phase FeSi was investigated by in situ high-pressure X-ray powder diffraction. Pressure up to 67 GPa was generated using the diamond anvil cell technique. FeSi transformed to a B2-type structure during laser heating, and remained stable up to the maximum pressure. This first-order phase transformation showed a volume reduction of 4 % at 25 GPa. The fit of a Birch-Murnaghan equation-of-state to the pressure-volume data resulted in V0 = 21.32 (3) Å3 and K0 = 225 (2) GPa when K0’ was fixed at 4. Our results are in good agreement with those of previous numerical studies using a GGA method employing ab initio calculations. This indicates that a small amount of B2-type FeSi phase may contribute to the decrease in seismic velocity at the base of the lower mantle.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.