Abstract
The Raspas Complex (Ecuador) contains one of the few eclogitic bodies in the northern Andes. It consists of metaperidotites, eclogites, and metapelites. The latter display three assemblages: (i) garnet + chloritoid + kyanite, (ii) garnet + chloritoid and (iii) garnet + chlorite, in all cases with quartz and muscovite in addition. The growth of these assemblages was coeval with the main ductile deformation, and was followed by minor reequilibration (chlorite growth in garnet + chloritoid samples and chloritoid + quartz aggregates replacing garnet and kyanite in garnet + chloritoid + kyanite samples). Detailed microprobe analyses show increasing magnesian compositions for garnet (from core to rim) and chloritoid (inclusions within garnet compared to matrix grains) in kyanite-bearing samples. The above data are interpreted in the framework of the KFMASH system. Reaction progress along the divariant reaction Cld = Grt + Ky explains the change in chemistry of coexisting phases. The divariant Grt-Cld-Ky assemblage has a narrow stability field, and the P-T conditions are estimated at about 20 kbar, 550–600°C. Decompression, recorded by chloritoid-quartz pseudomorphs of garnet, probably occurred as temperature decreased.