Abstract

Solid/liquid partition coefficients for large ion lithophile elements (Ba, Rb, Sr), high field strength elements (Zr, Hf, Nb, Ta, Ti), rare earth elements (La-Yb), Pb, Th, U and selected transition elements (Sc, V) were determined by means of Secondary Ion Mass Spectrometry on potassic-richterites synthesised at upper mantle conditions (P = 1.4 GPa and T = 850-1020°C) from silica-rich lamproites. Most trace elements display an incompatible behaviour in potassic-richterites; only Sr, Ti, Sc and V show strong positive anomalies in the partitioning pattern. When S/LD for potassic-richterites are compared with those for calcic amphiboles (pargasites and kaersutites) several differences become evident. In general, S/LD are lower in potassic-richterites; also, different partitioning patterns are apparent for RE and LIL elements. These differences are discussed in terms of the distinct crystal-chemical behaviour of the involved amphibole end-members, with particular emphasis to the available charge-balance mechanisms and to the site dimensional constraints ruling incorporation of trace elements in the various sites.

The distinct partitioning behaviours of trace elements in potassic-richterites and pargasites and kaersutites imply that melts produced from amphibole-bearing sources may differ markedly depending on the type of amphibole crystallised. Therefore, the new partitioning data are used to discuss the role of potassic-richterite in its principal modes of occurrence, namely in lamproites, in peralkaline ultramafic veins in the lithospheric mantle, and in the deeper parts of subduction zones.

You do not currently have access to this article.