The aenigmatite-rhonite mineral group consists of eight minerals: Aenigmatite, rhonite, serendibite, krinovite, welshite, dorrite, wilkinsonite and hogtuavite. The general chemical formula of the minerals in this group may be written as {X2} [Y6] (Z6) O 20 , with {X} eightfold coordinated Na (super +) , Ca (super 2+) and [Y] sixfold coordinated Mg (super 2+) , Fe (super 2+) , Fe (super 3+) , Ti (super 4+) , Al (super 3+) , Mn (super 2+) , Cr (super 3+) , Ti (super 3+) , Ca (super 2+) , Sb (super 5+) , Nb (super 5+) and As (super 5+) , and (Z) fourfold coordinated Si (super 4+) , Al (super 3+) , Fe (super 3+) , Be (super 2+) and B (super 3+) . There are two subgroups: a sodic group, including the minerals aenigmatite, krinovite and wilkinsonite, and a calcic group with rhonite, serendibite, dorrite, welshite and hogtuavite. The general features of the crystal structure are common to all the minerals of this group. These minerals occur in a wide range of rock types, e.g. alkaline lavas, sodium-rich intrusives, granitic gneisses, skarns, limestone-basalt contacts and meteorites, but mostly as accessories. Experimental data on stability are available only for aenigmatite and rhonite. Aenigmatite was synthesized at 700 degrees C/1000 bars and 750 degrees C/500 bars by Thompson & Chisholm (1969) and Lindsley (1969). The oxygen fugacity is constrained be lower than the faylite-quartz-magnetite = FQM buffer. Rhonite is stable from 850 degrees -1000 degrees C/1 bar to at least 5 kbar, 900 to 1100 degrees C (Kunzmann, 1989). There is no limit on oxygen fugacity. In alkali-basaltic rocks, the stability is restricted to pressures lower than 600 bars and temperatures from 840 to 1200 degrees C (Kunzmann, 1989). The chemistry of this group is complex, due to the flexibility of the structure. The structural formulae of 192 available analyses can be described in terms of seven substitutions: 1: Si IV +Na VIII <--> Al IV +Ca VIII ; 2: Si IV +Mg VI <--> Al IV +Al VI ; 3: Ti VI +Mg VI <--> 2Al VI ; 4: Mg VI <--> Fe (super 2+VI) ; 5: Al IV <--> B IV ; 6: Si IV +Be IV <--> 2Al IV ; 7: Sb (super 5+VI) +2Mg VI <--> 3Fe (super 3+VI) . The theoretical number of end-members (and names) resulting from these seven substitutions is immense. A simplified nomenclature is proposed here based on three substitutions. I: 2 Si IV +2Na VIII <--> 2Al IV +2Ca VIII ; II: 2Si IV +2(M (super 2+) ) VI <--> 2Al IV +2(M (super 3+) ) VI ; III: 2Ti (super 4+VI) +2(M (super 2+) ) VI <--> 4(M (super 3+) ) VI . This results in a rectangular polyhedron for the aenigmatite-rhonite group, in which ten sub-volumes can be assigned to ten end-members.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.