The attenuated total reflectance (ATR) spectra of two calcite samples have been measured using Ge and diamond internal reflection elements. One of the samples was obtained by precipitation from solution and displays sub-micrometer sized particles. The second sample was obtained by grinding a single-crystal of calcite (“Iceland spar” variety). Theoretical spectra were obtained by computing the reflection coefficient of the interface between the ATR internal reflection element and a homogeneous effective medium representing the powder sample. The dielectric properties of the effective medium have been determined from those of bulk calcite using the Bruggeman approach which is adequate for standard powders with intermediate fractions of solid and empty porosity. Although this modeling approach provides a quantitative interpretation of the broadening of strong absorption bands in the calcite ATR spectra, it fails to reproduce the apparent splitting of the strong ν3 CO3 band. This problem was solved by combining the electrostatic modeling approach with a semi-quantum model of the dielectric tensor of bulk calcite, which allows for a frequency-dependent damping of the ν3 CO3 excitation. The frequency-dependence is ascribed to a multiphonon-related resonance in the ν3 CO3 phonon self-energy at a frequency close to its transverse optical frequency. The combination of approaches exposed in the present study makes it possible to discriminate among physically different processes affecting the powder infrared spectra of calcite, some being related to the long-range nature of electrostatic interactions in polar materials and others being related to atomic-scale anharmonic interactions between vibrational modes.
Skip Nav Destination
Article navigation
Research Article|
January 01, 2019
Line-broadening and anharmonic effects in the attenuated total reflectance infrared spectra of calcite
Etienne Balan;
1
Sorbonne Université, CNRS, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)
, 4 place Jussieu, 75005Paris, France
Corresponding author, e-mail: [email protected]
Search for other works by this author on:
Julie Aufort;
Julie Aufort
1
Sorbonne Université, CNRS, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)
, 4 place Jussieu, 75005Paris, France
Search for other works by this author on:
Giuseppe D. Saldi;
Giuseppe D. Saldi
2
Géosciences Environnement Toulouse (GET), CNRS/UMR 5563–Université Paul Sabatier
, 14 av. E. Belin, 31400Toulouse, France
Search for other works by this author on:
Christian Brouder;
Christian Brouder
1
Sorbonne Université, CNRS, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)
, 4 place Jussieu, 75005Paris, France
Search for other works by this author on:
Michele Lazzeri
Michele Lazzeri
1
Sorbonne Université, CNRS, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)
, 4 place Jussieu, 75005Paris, France
Search for other works by this author on:
1
Sorbonne Université, CNRS, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)
, 4 place Jussieu, 75005Paris, France
Julie Aufort
1
Sorbonne Université, CNRS, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)
, 4 place Jussieu, 75005Paris, France
Giuseppe D. Saldi
2
Géosciences Environnement Toulouse (GET), CNRS/UMR 5563–Université Paul Sabatier
, 14 av. E. Belin, 31400Toulouse, France
Christian Brouder
1
Sorbonne Université, CNRS, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)
, 4 place Jussieu, 75005Paris, France
Michele Lazzeri
1
Sorbonne Université, CNRS, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)
, 4 place Jussieu, 75005Paris, France
Corresponding author, e-mail: [email protected]
Publisher: Deutsche Mineralogische Gesellschaft, Sociedad Española de Mineralogia, Societá Italiana di Mineralogia e Petrologia, Société Francaise de Minéralogie
Received:
25 May 2018
Revision Received:
03 Jul 2018
Accepted:
03 Jul 2018
First Online:
10 Sep 2018
Online ISSN: 1617-4011
Print ISSN: 0935-1221
© 2018 E. Schweizerbart’sche Verlagsbuchhandlung, 70176 Stuttgart, Germany
European Journal of Mineralogy (2019) 31 (1): 73–81.
Article history
Received:
25 May 2018
Revision Received:
03 Jul 2018
Accepted:
03 Jul 2018
First Online:
10 Sep 2018
Citation
Etienne Balan, Julie Aufort, Giuseppe D. Saldi, Christian Brouder, Michele Lazzeri; Line-broadening and anharmonic effects in the attenuated total reflectance infrared spectra of calcite. European Journal of Mineralogy 2019;; 31 (1): 73–81. doi: https://doi.org/10.1127/ejm/2018/0030-2802
Download citation file:
You could not be signed in. Please check your email address / username and password and try again.
Index Terms/Descriptors
Citing articles via
Related Articles
Near-infrared (1.3-2.4 mu m) spectra of alteration minerals; potential for use in remote sensing
Geophysics
Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns); calcite, aragonite, and dolomite
American Mineralogist
Water in skeletal carbonates
Journal of Sedimentary Research
Related Book Content
Spatial organization of gold and alteration mineralogy in hydrothermal systems: wavelet analysis of drillcore from Sunrise Dam Gold Mine, Western Australia
Characterization of Ore-Forming Systems from Geological, Geochemical and Geophysical Studies
Distinguishing between eogenetic, unconformity-related and mesogenetic dissolution: a case study from the Panna and Mukta fields, offshore Mumbai, India
Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction
The Role of Integrated Reservoir Petrophysics in Horizontal Well Evaluations to Increase Production in the Eagle Ford Shale
The Eagle Ford Shale: A Renaissance in U.S. Oil Production
CO 2 outgassing in a combined fracture and conduit karst aquifer near Lititz Spring, Pennsylvania
Perspectives on Karst Geomorphology, Hydrology, and Geochemistry - A Tribute Volume to Derek C. Ford and William B. White