Thermal behaviour and kinetics of dehydration in air of bassanite (calcium sulphate hemihydrate, CaSO4·0.5H2O) have been investigated in situ real-time using laboratory parallel-beam X-ray powder diffraction data. Thermal expansion has been analyzed between 303 and 383 K at increments of 5 K. The bassanite → γ-anhydrite conversion starts at 388 K and is completed at 408 K. Thermal expansion of hemihydrate is isotropic and not related to the expansion of CaO8–9 polyhedra. Lattice parameters and volume dependence from T is linear within the studied temperature range. Kinetics of dehydration has been investigated from isothermal diffraction data collected at 10 temperatures between 378 and 423 K with steps of 5 K using a fresh sample at each temperature. Transformed fraction α vs. t curves were fitted with seven different kinetic models. The best fit was found for the Avrami-Erofe’ev equation that provided an empirical activation energy Ea of the process of 73(5) kJ/mol. Ea was found to be substantially independent from the kinetic model selected.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.