Sixiangkou is a heavily shocked L6 chondrite that contains numerous shock-induced melt veins with varying widths. This paper focuses on pyroxene polymorphs in shock-induced melt veins in the meteorite and discusses their implication to the high pressure and temperature conditions during impact metamorphism. The major high-pressure polymorphs are majorite and majorite-pyrope solid solution. Diopside, akimotoite and jadeite were also observed in melt veins of the Sixiangkou chondrite. Diopside coexists with ringwoodite (+ akimotoite) in coarse-grained fragments of the melt veins. Two mechanisms were proposed for the lack of phase transformation of diopside: a) low local temperature and b) a very sluggish transformation rate. Majorite and majorite-pyrope occur as coarse-grained polycrystalline and fine-grained solid solution. They were formed through solid state transformation and crystallized from a melt under pressures, respectively. Akimotoite coexists with low-Ca pyroxene in coarse-grained fragments of melt veins. They have nearly identical chemical compositions to the host low-Ca pyroxene, implying a solid state transformation mechanism. Jadeite appeared as fine-grained and was originated through retrograde transformation of lingunite under moderate post-shock pressure and high temperature conditions. The coexistence of different high-pressure pyroxene polymorphs reflects an inhomogeneous distribution of temperature in the shock-induced melt veins and a kinetic effect of phase transformations of minerals during shock metamorphism.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.