Our results show that subsurface crude-oil degradation rates at a long-term research site were strongly influenced by small-scale variations in hydrologic conditions. The site is a shallow glacial outwash aquifer located near Bemidji in northern Minnesota that became contaminated when oil spilled from a broken pipeline in August 1979. In the study area, separate-phase oil forms a subsurface oil body extending from land surface to about 1 m (3.3 ft) below the 6–8-m (20–26 ft)-deep water table. Oil saturation in the sediments ranges from 10–20% in the vadose zone to 30–70% near the water table. At depths below 2 m (6.6 ft), degradation of the separate-phase crude oil occurs under methanogenic conditions. The sequence of methanogenic alkane degradation depletes the longer chain n-alkanes before the shorter chain n-alkanes, which is opposite to the better known aerobic sequence. The rates of degradation vary significantly with location in the subsurface. Oil-coated soils within 1.5 m (5 ft) of land surface have experienced little degradation where soil water saturation is less than 20%. Oil located 2–8 m (6.6–26 ft) below land surface in areas of higher recharge has been substantially degraded. The best explanation for the association between recharge and enhanced degradation seems to be increased downward transport of microbial growth nutrients to the oil body. This is supported by observations of greater microbial numbers at higher elevations in the oil body and significant decreases with depth in nutrient concentrations, especially phosphorus. Our results suggest that environmental effects may cause widely diverging degradation rates in the same spill, calling into question dating methods based on degradation state.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.