ABSTRACT
We have developed an algorithm to obtain the model parameters for two co-axial structures from self-potential data. The method uses the first numerical horizontal derivatives calculated from the observed self-potential anomaly employing filters of sequential window lengths (s-values) so as to gauge the model constraints for the shallow and deep structures. In addition, this algorithm uses a standard inversion method for solving a non-linear equation based on the lowest root-mean-square (RMS) error of the estimated model parameters. The body constraints are the depth, polarization angle and electric dipole moment of each structure. Our approach models the self-potential dataset as an aggregation of spheres, horizontal cylinders, and vertical cylinders. These simple bodies are used to approximate, without a priori expectations, the furthermost plausible position and/or area of intersection. In other words, the bodies are used to estimate the true values of the source parameters for the two-co-axial bodies at different s-values. Minimizing the RMS error has the advantage of optimizing all model factors. The proposed technique is tested using a numerical model with and without noise and on self-potential field data acquired at a site in Germany. In all cases, the assessed body parameters are reasonable approximations of the known values.