We updated our Next Generation Attenuation (NGA)-West1 ground motion models (GMMs) for the horizontal components of Arias intensity (AI) and cumulative absolute velocity (CAV) using the functional form and NGA-West2 database we used to develop GMMs for peak-amplitude and peak-spectral ground motion intensity measures (GMIMs). Our results show that CAV has the best goodness-of-fit statistics of all the GMIMs we have evaluated up to this time. Its relatively small between- and within-event standard deviations confirm its superior predictability. On the other hand, AI has the highest standard deviation of any GMIM we have studied thus far, which is approximately double that of CAV. Although either CAV or AI or a combination of both have been shown to meet various performance metrics proposed in the context of performance-based earthquake engineering (PBEE), CAV's high level of predictability makes it superior to AI for use in engineering applications, such as PBEE, that involve probabilistic inference.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.