The walls of modern low-rise economic housing in several Latin American countries are typically thin and have a low concrete strength, web steel ratios that are smaller than the minimum prescribed by current codes, and web shear reinforcement made of welded-wire mesh. In light of these particular wall characteristics, research was aimed at developing a performance-based backbone model capable of predicting the seismic behavior of reinforced concrete (RC) walls for one- and two-story housing. The selected tri-linear model is associated with three limit states: diagonal cracking, peak shear strength, and ultimate deformation capacity. The model was developed on the basis of the observed response of 39 quasi-static and shake table experiments. Iterative nonlinear regression analyses were performed for deriving the semi-empirical equations in this study. The paper also discusses the adequacy of some existing models to predict the seismic behavior of RC walls and the limitations of the proposed equations.

You do not currently have access to this article.