Large-amplitude sloshing caused by earthquakes may result in liquid impact on the roof of liquid storage tanks. The motivation for this study is better understanding of the sloshing-induced impact via experimental investigations and establishing an analytical approach for evaluation of the maximum impact force on tank roofs. The experimental tests are carried out using a rectangular liquid tank excited by harmonic oscillations. The effects of geometric parameters such as the tank aspect ratio, excitation amplitude and freeboard on maximum liquid impact force are investigated by conducting 140 tests. Based on the conservation of fluid momentum, an analytical solution is developed to model sloshing impact force on tank roofs. The analytical solution parameters are calibrated using the experimental measurements. Finally, the analytical scheme is extended for a systematic process to evaluate the hydrodynamic and hydrostatic components of impact forces for earthquake engineering application.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.