Passive friction and viscous damping systems for retrofitting steel moment-resisting frames located along the west coast of the United States are considered. First, preliminary design procedures are presented for friction as well as linear and nonlinear viscous damping systems. Thereafter, nonlinear dynamic analyses are performed on a six-story moment-resisting frame designed according to seismic provisions for California prior to the 1994 Northridge earthquake. A flexural strength degradation model is considered to account for the brittle behavior of pre-Northridge welded beam-to-column connections. The structure was subjected to three different earthquake ensembles including near-field records developed for major crustal earthquakes in California. The results of a parametric study indicate that, although both friction and viscous damping systems reduce significantly the response of the structure, they are unable by themselves to prevent fracture of welded beam-to-column joints. Connection retrofit measures of the types elaborated after the Northridge earthquake would still be required.

This content is PDF only. Please click on the PDF icon to access.
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.