Basanite lavas near Craven Lake, British Columbia, host a spinel lherzolite xenolith containing cross-cutting veins with pargasitic amphibole (plus minor apatite). The occurrence of vein amphibole in spinel lherzolite is singular for the Canadian Cordillera. The vein crosscuts foliated peridotite and is itself cut by the basanite host. The amphibole is pargasite, which is the most common amphibole composition in mantle peridotite. Rare earth element concentrations in the pargasite are similar to those for mafic alkaline rocks across the northern Cordilleran volcanic province (light rare earth elements ∼50× chondrite and heavy rare earth elements ∼5× chondrite). Two-pyroxene geothermometry suggests that the vein and host peridotite were thermally equilibrated prior to sampling by the basanite magma. Calculated temperature conditions for the sample, assuming equilibration along a model steady-state geotherm, are between 990 and 1050 °C and correspond to a pressure of 0.15 GPa (∼52 ± 2 km depth). These conditions are consistent with the stability limits of mantle pargasite in the presence of a fluid having XH2O < ∼0.1. The pargasite vein and associated apatite provide direct evidence for postaccretion fracture infiltration of CO2–F–H2O-bearing silicate fluids into the Cordilleran mantle lithosphere. Pargasite with low aH2O is in equilibrium with parts per million concentrations of H2O in mantle olivine, potentially lowering the mechanical strength of the lithospheric mantle underlying the Cordillera and making it more susceptible to processes such as lithospheric delamination. Remelting of Cordilleran mantle lithosphere containing amphibole veins may be involved in the formation of sporadic nephelinite found in the Canadian Cordillera.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.